Previous |  Up |  Next

Article

Title: Method of infinite ascent applied on $-(2^p\cdot A^6)+B^3=C^2$ (English)
Author: Jena, Susil Kumar
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 21
Issue: 2
Year: 2013
Pages: 173-178
Summary lang: English
.
Category: math
.
Summary: In this paper, the author shows a technique of generating an infinite number of coprime integral solutions for $(A,B,C)$ of the Diophantine equation $-(2^p\cdot A^6) + B^3 = C^2$ for any positive integral values of $p$ when $p \equiv 1$ (mod 6) or $p \equiv 2$ (mod 6). For doing this, we will be using a published result of this author in The Mathematics Student, a periodical of the Indian Mathematical Society. (English)
Keyword: higher order Diophantine equations
Keyword: method of infinite ascent
Keyword: Diophantine equation $-(2^p\cdot A^6) + B^3 = C^2$
MSC: 11D41
MSC: 11D72
idZBL: Zbl 06296536
idMR: MR3159288
.
Date available: 2014-01-27T12:45:07Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/143589
.
Reference: [1] Arif, S.A., Abu Muriefah, F.S.: The Diophantine equation $x^2 + 3^m = y^n$.Int. J. Math. Math. Sci., 21, 3, 1998, 619-620. Zbl 0905.11017, MR 1620327
Reference: [2] Arif, S.A., Abu Muriefah, F.S.: On the Diophantine equation $x^2 +2^k =y^n$ II.Arab J. Math. Sci., 7, 2, 2001, 67-71. Zbl 1010.11021, MR 1940290
Reference: [3] Abu Muriefah, F.S., Luca, F., Togbé, A.: On the Diophantine equation $x^2 +5^a 13^b = y^n$.Glasg. Math. J., 50, 1, 2008, 175-181. Zbl 1186.11016, MR 2381741
Reference: [4] Bérczes, A., Pink, I.: On the Diophantine equation $x^2+p^{2k}=y^n$.Archiv der Mathematik, 91, 6, 2008, 505-517. Zbl 1175.11018, MR 2465869, 10.1007/s00013-008-2847-x
Reference: [5] Bérczes, A., Pink, I.: On the Diophantine equation $x^2 +d^{2l+1} =y^n$.Glasg. Math. J., 54, 2, 2012, 415-428. Zbl 1266.11059, MR 2911379
Reference: [6] Bugeaud, Y., Muriefah, F.S. Abu: The Diophantine equation $x^2 + c = y^n$: a brief overview.Rev. Colomb. Mat., 40, 1, 2006, 31-37. MR 2286850
Reference: [7] Bugeaud, Y., Mignotte, M., Siksek, S.: Classical and modular approaches to Exponential Diophantine equations II: The Lebesgue-Nagell equation.Compositio Mathematica, 142, 2006, 31-62. Zbl 1128.11013, MR 2196761, 10.1112/S0010437X05001739
Reference: [8] Chao, K.: On the Diophantine equation $x^2 = y^n + 1, xy\not =0$.Sci. Sinica, 14, 1965, 457-460. MR 0183684
Reference: [9] Cohn, J.H.E.: The diophantine equation $x^2 +2^k =y^n$.Arch. Math. (Basel), 59, 4, 1992, 341-344. MR 1179459, 10.1007/BF01197049
Reference: [10] Cohn, J.H.E.: The Diophantine equation $x^2 + C = y^n$.Acta Arith., 65, 4, 1993, 367-381. MR 1259344
Reference: [11] Goins, E., Luca, F., Togbé, A.: On the Diophantine equation $x^2 +2^\alpha 5^\beta 13^\gamma = y^n$.ANTS VIII Proceedings: A. J. van der Poorten and A. Stein (eds.), ANTS VIII, Lecture Notes in Computer Science 5011, 2008, 430-442. Zbl 1232.11130, MR 2467863
Reference: [12] Jena, S.K.: Method of Infinite Ascent applied on $mA^6 + nB^3 = C^2$.Math. Student, 77, 2008, 239-246. Zbl 1217.11035, MR 2642292
Reference: [13] Le, M.: Diophantine equation $x^2 + 2^m = y^n$.Chinese Sci. Bull., 42, 18, 1997, 1515-1517. Zbl 1044.11566, MR 1641030, 10.1007/BF02882920
Reference: [14] Lebesgue, V.A.: Sur l'impossibilité en nombres entiers de l'équation $x^m = y^2 + 1$.Nouv. Ann. Math., 99, 1850, 178-181, (French).
Reference: [15] Ljunggren, W.: Über einige Arcustangensgleichungen die auf interessante unbestimmte Gleichungen führen.Ark. Mat., 29A, 13, 1943, 1-11, (German). Zbl 0028.10904, MR 0012090
Reference: [16] Luca, F.: On the equation $ x^2 + 2^a\cdot 3^b = y^n$.Int. J. Math. Math. Sci., 29, 4, 2002, 239-244. Zbl 1085.11021
Reference: [17] Luca, F., Togbé, A.: On the Diophantine equation $x^2 +2^a 5^b = y^n$.Int. J. Number Theory, 4, 6, 2008, 973-979. MR 2483306, 10.1142/S1793042108001791
Reference: [18] Mignotte, M., de Weger, B.M.M.: On the Diophantine equations $x^2 + 74 = y^5$ and $x^2 + 86 = y^5$.Glasgow Math. J., 38, 1, 1996, 77-85. MR 1373962
Reference: [19] Nagell, T.: Sur l'impossibilité de quelques équations à deux indéterminées.Norsk. Mat. Forensings Sknifter, 13, 1923, 65-82, (French).
Reference: [20] Nagell, T.: Contributions to the theory of Diophantine equations of the second degree with two unknowns.Nova Acta Soc. Sci. Upsal. Ser (4), 16, 2, 1955, 38-38. MR 0070645
Reference: [21] Pink, I., Rábai, Zs.: On the Diophantine equation $x^2 + 5^k 17^l = y^n$.Commun. Math., 19, 1, 2011, 1-9. MR 2855388
Reference: [22] Saradha, N., Srinivasan, A.: Solutions of some generalized Ramanujan-Nagell equations.Indag. Math. (N.S.), 17, 1, 2006, 103-114. Zbl 1110.11012, MR 2337167, 10.1016/S0019-3577(06)80009-1
Reference: [23] Saradha, N., Srinivasan, A.: Solutions of some generalized Ramanujan-Nagell equations via binary quadratic forms.Publ. Math. Debrecen, 71, 3-4, 2007, 349-374. Zbl 1164.11020, MR 2361718
Reference: [24] Zhu, H., Le, M.: On some generalized Lebesgue-Nagell equations.J. Number Theory, 131, 3, 2011, 458-469. Zbl 1219.11059, MR 2739046, 10.1016/j.jnt.2010.09.009
.

Files

Files Size Format View
ActaOstrav_21-2013-2_6.pdf 406.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo