Title:
|
Basic bounds of Fréchet classes (English) |
Author:
|
Skřivánek, Jaroslav |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
50 |
Issue:
|
1 |
Year:
|
2014 |
Pages:
|
95-108 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Algebraic bounds of Fréchet classes of copulas can be derived from the fundamental attributes of the associated copulas. A minimal system of algebraic bounds and related basic bounds can be defined using properties of pointed convex polyhedral cones and their relationship with non-negative solutions of systems of linear homogeneous Diophantine equations, largely studied in Combinatorics. The basic bounds are an algebraic improving of the Fréchet-Hoeffding bounds. We provide conditions of compatibility and propose tools for an explicit description of the basic bounds of simple Fréchet classes. (English) |
Keyword:
|
algebraic bound |
Keyword:
|
basic bound |
Keyword:
|
copula |
Keyword:
|
Diophantine equation |
Keyword:
|
Fréchet class |
Keyword:
|
pointed convex polyhedral cone |
MSC:
|
11D75 |
MSC:
|
60E05 |
MSC:
|
62H20 |
idZBL:
|
Zbl 1291.60034 |
idMR:
|
MR3195006 |
DOI:
|
10.14736/kyb-2014-1-0095 |
. |
Date available:
|
2014-05-02T06:48:07Z |
Last updated:
|
2016-01-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143765 |
. |
Reference:
|
[1] Contejean, E., Devie, H.: An efficient incremental algorithm for solving system of linear Diophantine equations..Inform. and Comput. 113 (1994), 1, 143-172. MR 1283022, 10.1006/inco.1994.1067 |
Reference:
|
[2] Embrechts, P., Lindskog, F., McNeil, A.: Modelling dependence with copulas and applications to risk management..In: Handbook of Heavy Tailed Distributions in Finance (S. T. Rachev, ed.), Elsevier/North-Holland 2003. |
Reference:
|
[3] Embrechts, P.: Copulas: A personal view..J. Risk and Insurance 76 (2009), 3, 639-650. 10.1111/j.1539-6975.2009.01310.x |
Reference:
|
[4] Joe, H.: Multivariate Models and Dependence Concepts..Chapman and Hall, London 1997. Zbl 0990.62517, MR 1462613 |
Reference:
|
[5] Nelsen, R. B.: Introduction to Copulas. Second edition..Springer-Verlag, New York 2006. MR 2197664 |
Reference:
|
[6] Sebö, A.: Hilbert bases, Carathéodory's theorem and combinatorial optimization..In: Integer Programming and Combinatorial Optimization (R. Kannan and W. Pulleyblanck, eds.), University of Waterloo Press, Waterloo 1990, pp. 431-456. |
Reference:
|
[7] Skřivánek, J.: Bounds of general Fréchet classes..Kybernetika 48 (2012), 1, 130-143. Zbl 1251.60015, MR 2932932 |
Reference:
|
[8] Stanley, R. P.: Enumerative Combinatorics 1. Second edition..Cambridge University Press, New York 2012. MR 2868112 |
Reference:
|
[9] Tomás, A. P., Filgueiras, M.: An algorithm for solving systems of linear Diophantine equations in naturals..In: Progress in Artificial Intelligence (Coimbra) (E. Costa and A. Cardoso, eds.), Lecture Notes in Comput. Sci. 1323, Springer-Verlag, Berlin 1997, pp. 73-84. Zbl 0884.11020, MR 1703009 |
. |