Previous |  Up |  Next

Article

Title: On transient queue-size distribution in the batch-arrivals system with a single vacation policy (English)
Author: Kempa, Wojciech M.
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 50
Issue: 1
Year: 2014
Pages: 126-141
Summary lang: English
.
Category: math
.
Summary: A queueing system with batch Poisson arrivals and single vacations with the exhaustive service discipline is investigated. As the main result the representation for the Laplace transform of the transient queue-size distribution in the system which is empty before the opening is obtained. The approach consists of few stages. Firstly, some results for a ``usual'' system without vacations corresponding to the original one are derived. Next, applying the formula of total probability, the analysis of the original system on a single vacation cycle is brought to the study of the ``usual'' system. Finally, the renewal theory is used to derive the general result. Moreover, a numerical approach to analytical results is discussed and some illustrative numerical examples are given. (English)
Keyword: batch Poisson arrivals
Keyword: queue-size distribution
Keyword: renewal theory
Keyword: single vacation
Keyword: transient state
MSC: 60K25
MSC: 90B22
idZBL: Zbl 1288.90011
idMR: MR3195008
DOI: 10.14736/kyb-2014-1-0126
.
Date available: 2014-05-02T06:50:03Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143767
.
Reference: [1] Abate, J., Choudhury, G. L., Whitt, W.: An introduction to numerical transform inversion and its application to probability models..In: Computational Probability (W. Grassmann, ed.), Kluwer, Boston 2000, pp. 257-323. Zbl 0945.65008
Reference: [2] Bischof, W.: Analysis of $M/G/1$-queues with setup times and vacations under six different service disciplines..Queueing Syst. 39 (2001), 4, 265-301. Zbl 0994.60088, MR 1885740, 10.1023/A:1013992708103
Reference: [3] Borovkov, A. A.: Stochastic Processes in Queueing Theory..Springer-Verlag 1976. Zbl 0319.60057, MR 0391297
Reference: [4] Bratiichuk, M. S., Kempa, W. M.: Application of the superposition of renewal processes to the study of batch arrival queues..Queueing Syst. 44 (2003), 51-67. MR 1989866
Reference: [5] Bratiichuk, M. S., Kempa, W. M.: Explicit formulae for the queue length distribution of batch arrival systems..Stoch. Models 20 (2004), 4, 457-472. MR 2094048, 10.1081/STM-200033115
Reference: [6] Choudhury, G.: A batch arrival queue with a vacation time under single vacation policy..Comput. Oper. Res. 29 (2002), 14, 1941-1955. Zbl 1010.90010, MR 1920586, 10.1016/S0305-0548(01)00059-4
Reference: [7] Hur, S., Ahn, S.: Batch arrival queues with vacations and server setup..Appl. Math. Model. 29 (2005), 12, 1164-1181. Zbl 1163.90425, 10.1016/j.apm.2005.03.002
Reference: [8] Kempa, W. M.: $GI/G/1/\infty$ batch arrival queueing system with a single exponential vacation..Math. Methods Oper. Res. 69 (2009), 1, 81-97. Zbl 1170.60032, MR 2476049, 10.1007/s00186-008-0212-2
Reference: [9] Kempa, W. M.: Some new results for departure process in the $M^{X}/G/1$ queueing system with a single vacation and exhaustive service..Stoch. Anal. Appl. 28 (2010), 1, 26-43. Zbl 1189.60168, MR 2597978, 10.1080/07362990903417920
Reference: [10] Kempa, W. M.: On departure process in the batch arrival queue with single vacation and setup time..Ann. UMCS, AI 10 (2010), 1, 93-102. Zbl 1284.60162, MR 3116951
Reference: [11] Kempa, W. M.: Characteristics of vacation cycle in the batch arrival queueing system with single vacations and exhaustive service..Internat. J. Appl. Math. 23 (2010), 4, 747-758. Zbl 1208.60096, MR 2731457
Reference: [12] Kempa, W. M.: On main characteristics of the $M/M/1/N$ queue with single and batch arrivals and the queue size controlled by AQM algorithms..Kybernetika 47 (2011), 6, 930-943. Zbl 1241.90035, MR 2907852
Reference: [13] Kempa, W. M.: The virtual waiting time in a finite-buffer queue with a single vacation policy..Lecture Notes Comp. Sci. 7314 (2012), 47-60. 10.1007/978-3-642-30782-9_4
Reference: [14] Prabhu, N. U.: Stochastic Storage Processes..Springer 1998. Zbl 0888.60073, MR 1492990
Reference: [15] Takagi, H.: Queueing Analysis. A Foundation of Performance Evaluation. Volume 1: Vacation and Priority Systems. Part 1..North-Holland, Amsterdam 1991. Zbl 0744.60114, MR 1149382
Reference: [16] Tang, Y., Tang, X.: The queue-length distribution for $M^{x}/G/1$ queue with single server vacation..Acta Math. Sci. (Eng. Ed.) 20 (2000), 3, 397-408. Zbl 0984.60097, MR 1793213
Reference: [17] Tian, N., Zhang, Z. G.: Vacation Queueing Models. Theory and Applications..Springer, New York 2006. Zbl 1104.60004, MR 2248264
.

Files

Files Size Format View
Kybernetika_50-2014-1_10.pdf 396.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo