Previous |  Up |  Next

Article

Keywords:
reaction-diffusion problem; singular perturbation; mesh adaptation
Summary:
FEM discretizations of arbitrary order $r$ are considered for a singularly perturbed one-dimensional reaction-diffusion problem whose solution exhibits strong layers. A posteriori error bounds of interpolation type are derived in the maximum norm. An adaptive algorithm is devised to resolve the boundary layers. Numerical experiments complement our theoretical results.
References:
[1] Bakhvalov, N. S.: On the optimization of the methods for solving boundary value problems in the presence of a boundary layer. Zh. Vychisl. Mat. Mat. Fiz. 9 (1969), 841-859 Russian. MR 0255066
[2] Chadha, N. M., Kopteva, N.: A robust grid equidistribution method for a one-dimensional singularly perturbed semilinear reaction-diffusion problem. IMA J. Numer. Anal. 31 (2011), 188-211. DOI 10.1093/imanum/drp033 | MR 2755942 | Zbl 1211.65099
[3] Boor, C. de: Good approximation by splines with variable knots. Spline Functions and Approximation Theory. Proceedings of the symposium held at the University of Alberta, Edmonton, 1972 A. Meir et al. International Series of Numerical Mathematics 21 Birkhäuser, Basel (1973), 57-72. MR 0403169 | Zbl 0255.41007
[4] Demlow, A., Lakkis, O., Makridakis, C.: A posteriori error estimates in the maximum norm for parabolic problems. SIAM J. Numer. Anal. 47 2157-2176 (2009). DOI 10.1137/070708792 | MR 2519598 | Zbl 1196.65153
[5] Kopteva, N.: Maximum norm a posteriori error estimates for a 1D singularly perturbed semilinear reaction-diffusion problem. IMA J. Numer. Anal. 27 576-592 (2007). DOI 10.1093/imanum/drl020 | MR 2337581 | Zbl 1149.65066
[6] Kopteva, N., Linß, T.: Maximum norm a posteriori error estimation for parabolic problems using elliptic reconstructions. SIAM J. Numer. Anal. 51 (2013), 1494-1524. DOI 10.1137/110830563 | MR 3056758 | Zbl 1281.65121
[7] Kopteva, N., Linß, T.: Numerical study of maximum norm a posteriori error estimates for singularly perturbed parabolic problems. Numerical Analysis and its Applications. 5th international conference, NAA 2012, Lozenetz, Bulgaria, 2012. Revised selected papers I. Dimov et al. Lecture Notes in Computer Science 8236 Springer, Berlin (2013), 50-61. DOI 10.1007/978-3-642-41515-9_5 | MR 3149972
[8] Kopteva, N., Stynes, M.: A robust adaptive method for a quasi-linear one-dimensional convection-diffusion problem. SIAM J. Numer. Anal. 39 (2001), 1446-1467. DOI 10.1137/S003614290138471X | MR 1870850 | Zbl 1012.65076
[9] Kunert, G.: A note on the energy norm for a singularly perturbed model problem. Computing 69 (2002), 265-272. DOI 10.1007/s00607-002-1457-x | MR 1954563 | Zbl 1239.65055
[10] Linß, T.: Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems. Lecture Notes in Mathematics 1985 Springer, Berlin (2010). MR 2583792 | Zbl 1202.65120
[11] Linß, T.: Maximum-norm error analysis of a non-monotone FEM for a singularly perturbed reaction-diffusion problem. BIT 47 (2007), 379-391. DOI 10.1007/s10543-007-0118-z | MR 2334045 | Zbl 1221.65175
[12] Melenk, J. M.: $hp$-Finite Element Methods for Singular Perturbations. Lecture Notes in Mathematics 1796 Springer, Berlin (2002). DOI 10.1007/b84212 | MR 1939620 | Zbl 1021.65055
[13] Nochetto, R. H., Schmidt, A., Siebert, K. G., Veeser, A.: Pointwise a posteriori error estimates for monotone semi-linear equations. Numer. Math. 104 (2006), 515-538. DOI 10.1007/s00211-006-0027-0 | MR 2249676 | Zbl 1104.65107
[14] Roos, H.-G., Schopf, M.: Convergence and stability in balanced norms of finite element methods on Shishkin meshes for reaction-diffusion problems. Z. Angew. Math. Mech., in press.
[15] Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion-Reaction and Flow Problems 2nd ed. Springer Series in Computational Mathematics 24 Springer, Berlin (2008). MR 2454024 | Zbl 1155.65087
[16] Shishkin, G. I.: Discrete Approximation of Singularly Perturbed Elliptic and Parabolic Equations. Russian Academy of Sciences, Ural Section Ekaterinburg (1992), Russian.
Partner of
EuDML logo