[1] Bakhvalov, N. S.:
On the optimization of the methods for solving boundary value problems in the presence of a boundary layer. Zh. Vychisl. Mat. Mat. Fiz. 9 (1969), 841-859 Russian.
MR 0255066
[2] Chadha, N. M., Kopteva, N.:
A robust grid equidistribution method for a one-dimensional singularly perturbed semilinear reaction-diffusion problem. IMA J. Numer. Anal. 31 (2011), 188-211.
DOI 10.1093/imanum/drp033 |
MR 2755942 |
Zbl 1211.65099
[3] Boor, C. de:
Good approximation by splines with variable knots. Spline Functions and Approximation Theory. Proceedings of the symposium held at the University of Alberta, Edmonton, 1972 A. Meir et al. International Series of Numerical Mathematics 21 Birkhäuser, Basel (1973), 57-72.
MR 0403169 |
Zbl 0255.41007
[7] Kopteva, N., Linß, T.:
Numerical study of maximum norm a posteriori error estimates for singularly perturbed parabolic problems. Numerical Analysis and its Applications. 5th international conference, NAA 2012, Lozenetz, Bulgaria, 2012. Revised selected papers I. Dimov et al. Lecture Notes in Computer Science 8236 Springer, Berlin (2013), 50-61.
DOI 10.1007/978-3-642-41515-9_5 |
MR 3149972
[10] Linß, T.:
Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems. Lecture Notes in Mathematics 1985 Springer, Berlin (2010).
MR 2583792 |
Zbl 1202.65120
[14] Roos, H.-G., Schopf, M.: Convergence and stability in balanced norms of finite element methods on Shishkin meshes for reaction-diffusion problems. Z. Angew. Math. Mech., in press.
[15] Roos, H.-G., Stynes, M., Tobiska, L.:
Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion-Reaction and Flow Problems 2nd ed. Springer Series in Computational Mathematics 24 Springer, Berlin (2008).
MR 2454024 |
Zbl 1155.65087
[16] Shishkin, G. I.: Discrete Approximation of Singularly Perturbed Elliptic and Parabolic Equations. Russian Academy of Sciences, Ural Section Ekaterinburg (1992), Russian.