Previous |  Up |  Next

Article

Title: Mean Oscillation and Boundedness of Multilinear Integral Operators with General Kernels (English)
Author: Lanzhe, Liu
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 50
Issue: 2
Year: 2014
Pages: 77-96
Summary lang: English
.
Category: math
.
Summary: In this paper, the boundedness properties for some multilinear operators related to certain integral operators from Lebesgue spaces to Orlicz spaces are proved. The integral operators include singular integral operator with general kernel, Littlewood-Paley operator, Marcinkiewicz operator and Bochner-Riesz operator. (English)
Keyword: multilinear operator
Keyword: singular integral operator
Keyword: BMO space
Keyword: Orlicz space
Keyword: Littlewood-Paley operator
Keyword: Marcinkiewicz operator
Keyword: Bochner-Riesz operator
MSC: 42B20
MSC: 42B25
idZBL: Zbl 06391567
idMR: MR3215281
DOI: 10.5817/AM2014-2-77
.
Date available: 2014-05-23T09:32:31Z
Last updated: 2015-03-19
Stable URL: http://hdl.handle.net/10338.dmlcz/143781
.
Reference: [1] Chang, D.C., Li, J.F., Xiao, J.: Weighted scale estimates for Calderón-Zygmund type operators.Contemp. Math. 446 (2007), 61–70. MR 2381886, 10.1090/conm/445/08593
Reference: [2] Chanillo, S.: A note on commutators.Indiana Univ. Math. J. 31 (1982), 7–16. Zbl 0523.42015, MR 0642611, 10.1512/iumj.1982.31.31002
Reference: [3] Cohen, J.: A sharp estimate for a multilinear singular integral on $R^n$.Indiana Univ. Math. J. 30 (1981), 693–702. MR 0625598
Reference: [4] Cohen, J., Gosselin, J.: On multilinear singular integral operators on $R^n$.Studia Math. 72 (1982), 199–223. MR 0671397
Reference: [5] Cohen, J., Gosselin, J.: A $\operatorname{BMO}$ estimate for multilinear singular integral operators.Illinois J. Math. 30 (1986), 445–465. MR 0850342
Reference: [6] Coifman, R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables.Ann. of Math. 103 (1976), 611–635. Zbl 0326.32011, MR 0412721, 10.2307/1970954
Reference: [7] Ding, Y., Lu, S.Z.: Weighted boundedness for a class rough multilinear operators.Acta Math. Sinica 17 (2001), 517–526. MR 1852966, 10.1007/s101140100113
Reference: [8] Garcia-Cuerva, J., Rubio de Francia, J.L.: Weighted norm inequalities and related topics.North-Holland Math., vol. 116, Amsterdam, 1985. MR 0848147
Reference: [9] Janson, S.: Mean oscillation and commutators of singular integral operators.Ark. Mat. 16 (1978), 263–270. Zbl 0404.42013, MR 0524754, 10.1007/BF02386000
Reference: [10] Lin, Y.: Sharp maximal function estimates for Calderón-Zygmund type operators and commutators.Acta Math. Scientia 31(A) (2011), 206–215. Zbl 1240.42051, MR 2808816
Reference: [11] Liu, L.Z.: Continuity for commutators of Littlewood-Paley operator on certain Hardy spaces.J. Korean Math. Soc. 40 (2003), 41–60. MR 1945712, 10.4134/JKMS.2003.40.1.041
Reference: [12] Liu, L.Z.: The continuity of commutators on Triebel-Lizorkin spaces.Integral Equations Operator Theory 49 (2004), 65–76. Zbl 1075.42004, MR 2057768, 10.1007/s00020-002-1186-8
Reference: [13] Liu, L.Z.: Endpoint estimates for multilinear integral operators.J. Korean Math. Soc. 44 (2007), 541–564. Zbl 1137.42003, MR 2314827, 10.4134/JKMS.2007.44.3.541
Reference: [14] Liu, L.Z.: Sharp and weighted inequalities for multilinear integral operators.Rev. R. Acad. Cienc. Exactas Fís. Nat. (Esp.) 101 (2007), 99–111. Zbl 1202.42041, MR 2324584
Reference: [15] Liu, L.Z.: Sharp maximal function estimates and boundedness for commutators associated with general integral operator.Filomat 25 (2011), 137–151. Zbl 1265.42038, MR 2951464, 10.2298/FIL1104137L
Reference: [16] Liu, L.Z.: Weighted boundedness for multilinear Littlewood-Paley and Marcinkiewicz operators on Morrey spaces.J. Contemp. Math. Anal. 46 (2011), 49–66. Zbl 1302.42025, MR 2894336
Reference: [17] Lu, S.Z.: Four lectures on real $H^p$ spaces.World Scientific, River Edge, NI, 1995. MR 1342077
Reference: [18] Paluszynski, M.: Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss.Indiana Univ. Math. J. 44 (1995), 1–17. Zbl 0838.42006, MR 1336430
Reference: [19] Pérez, C., Pradolini, G.: Sharp weighted endpoint estimates for commutators of singular integral operators.Michigan Math. J. 49 (2001), 23–37. MR 1827073, 10.1307/mmj/1008719033
Reference: [20] Pérez, C., Trujillo-Gonzalez, R.: Sharp weighted estimates for multilinear commutators.J. London Math. Soc. 65 (2002), 672–692. Zbl 1012.42008, MR 1895740, 10.1112/S0024610702003174
Reference: [21] Rao, M.M., Ren, Z.D.: Theory of Orlicz spaces.Textbooks in Pure and Applied Mathematics, vol. 146, Marcel Dekker, Inc., New York, 1991. Zbl 0724.46032, MR 1113700
Reference: [22] Stein, E.M.: Harmonic analysis: real variable methods, orthogonality and oscillatory integrals.Princeton Univ. Press, Princeton NJ, 1993. Zbl 0821.42001, MR 1232192
Reference: [23] Torchinsky, A.: Real variable methods in harmonic analysis.Pure and Applied Math., Academic Press, New York 123 (1986). Zbl 0621.42001, MR 0869816
Reference: [24] Torchinsky, A., Wang, S.: A note on the Marcinkiewicz integral.Colloq. Math. 60/61 (1990), 235–243. Zbl 0731.42019, MR 1096373
Reference: [25] Wu, B.S., Liu, L.Z.: A sharp estimate for multilinear Bochner-Riesz operator.Studia Sci. Math. Hungar. 42 (1) (2005), 47–59. Zbl 1109.42003, MR 2128674
.

Files

Files Size Format View
ArchMathRetro_050-2014-2_2.pdf 514.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo