Previous |  Up |  Next

Article

Title: Discriminating between causal structures in Bayesian Networks given partial observations (English)
Author: Moritz, Philipp
Author: Reichardt, Jörg
Author: Ay, Nihat
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 50
Issue: 2
Year: 2014
Pages: 284-295
Summary lang: English
.
Category: math
.
Summary: Given a fixed dependency graph $G$ that describes a Bayesian network of binary variables $X_1, \dots, X_n$, our main result is a tight bound on the mutual information $I_c(Y_1, \dots, Y_k) = \sum_{j=1}^k H(Y_j)/c - H(Y_1, \dots, Y_k)$ of an observed subset $Y_1, \dots, Y_k$ of the variables $X_1, \dots, X_n$. Our bound depends on certain quantities that can be computed from the connective structure of the nodes in $G$. Thus it allows to discriminate between different dependency graphs for a probability distribution, as we show from numerical experiments. (English)
Keyword: Bayesian networks
Keyword: causal Markov condition
Keyword: information theory
Keyword: information inequalities
Keyword: common ancestors
Keyword: causal inference
MSC: 60A08
MSC: 62-09
MSC: 62B09
MSC: 62H99
idZBL: Zbl 06325225
idMR: MR3216995
DOI: 10.14736/kyb-2014-2-0284
.
Date available: 2014-06-06T14:49:16Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143794
.
Reference: [1] Allman, E. S., Rhodes, J. A.: Reconstructing Evolution: New Mathematical and Computational Advances, chapter Phylogenetic invariants..Oxford University Press, 2007. MR 2307988
Reference: [2] Ay, N.: A refinement of the common cause principle..Discrete Appl. Math. 157 (2009), 10, 2439-2457. MR 2527961, 10.1016/j.dam.2008.06.032
Reference: [3] Bollobás, B.: Random Graphs..Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2001. Zbl 1220.05117, MR 1864966
Reference: [4] Cover, T. M., Thomas, J. A.: Elements of Information Theory. Second edition..Wiley, 2006. MR 2239987
Reference: [5] Friedman, N.: Inferring cellular networks using probabilistic graphical models..Science 303 (2004), 5659, 799-805. 10.1126/science.1094068
Reference: [6] Peters, J., Mooij, J., Janzing, D., Schölkopf, B.: Causal discovery with continuous additive noise models..arXiv 1309.6779 (2013).
Reference: [7] Lauritzen, S. L.: Graphical Models..Oxford Science Publications, Clarendon Press, 1996. MR 1419991
Reference: [8] Lauritzen, S. L., Sheehan, N. A.: Graphical models for genetic analyses..Statist. Sci. 18 (2003), 489-514. Zbl 1055.62126, MR 2059327, 10.1214/ss/1081443232
Reference: [9] Pearl, J.: Causality: Models, Reasoning and Inference..Cambridge University Press, 2000. Zbl 1188.68291, MR 1744773
Reference: [10] Reichenbach, H., Reichenbach, M.: The Direction of Time..California Library Reprint Series, University of California Press, 1956.
Reference: [11] Socolar, J. E. S., Kauffman, S. A.: Scaling in ordered and critical random boolean networks..Phys. Rev. Lett. 90 (2003), 068702. 10.1103/PhysRevLett.90.068702
Reference: [12] Steudel, B., Ay, N.: Information-theoretic inference of common ancestors..CoRR, abs/1010.5720, 2010.
Reference: [13] Studený, M.: Probabilistic Conditional Independence Structures..Information Science and Statistics. Springer, 2005. Zbl 1070.62001
.

Files

Files Size Format View
Kybernetika_50-2014-2_8.pdf 356.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo