Title:
|
Discriminating between causal structures in Bayesian Networks given partial observations (English) |
Author:
|
Moritz, Philipp |
Author:
|
Reichardt, Jörg |
Author:
|
Ay, Nihat |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
50 |
Issue:
|
2 |
Year:
|
2014 |
Pages:
|
284-295 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Given a fixed dependency graph $G$ that describes a Bayesian network of binary variables $X_1, \dots, X_n$, our main result is a tight bound on the mutual information $I_c(Y_1, \dots, Y_k) = \sum_{j=1}^k H(Y_j)/c - H(Y_1, \dots, Y_k)$ of an observed subset $Y_1, \dots, Y_k$ of the variables $X_1, \dots, X_n$. Our bound depends on certain quantities that can be computed from the connective structure of the nodes in $G$. Thus it allows to discriminate between different dependency graphs for a probability distribution, as we show from numerical experiments. (English) |
Keyword:
|
Bayesian networks |
Keyword:
|
causal Markov condition |
Keyword:
|
information theory |
Keyword:
|
information inequalities |
Keyword:
|
common ancestors |
Keyword:
|
causal inference |
MSC:
|
60A08 |
MSC:
|
62-09 |
MSC:
|
62B09 |
MSC:
|
62H99 |
idZBL:
|
Zbl 06325225 |
idMR:
|
MR3216995 |
DOI:
|
10.14736/kyb-2014-2-0284 |
. |
Date available:
|
2014-06-06T14:49:16Z |
Last updated:
|
2016-01-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143794 |
. |
Reference:
|
[1] Allman, E. S., Rhodes, J. A.: Reconstructing Evolution: New Mathematical and Computational Advances, chapter Phylogenetic invariants..Oxford University Press, 2007. MR 2307988 |
Reference:
|
[2] Ay, N.: A refinement of the common cause principle..Discrete Appl. Math. 157 (2009), 10, 2439-2457. MR 2527961, 10.1016/j.dam.2008.06.032 |
Reference:
|
[3] Bollobás, B.: Random Graphs..Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2001. Zbl 1220.05117, MR 1864966 |
Reference:
|
[4] Cover, T. M., Thomas, J. A.: Elements of Information Theory. Second edition..Wiley, 2006. MR 2239987 |
Reference:
|
[5] Friedman, N.: Inferring cellular networks using probabilistic graphical models..Science 303 (2004), 5659, 799-805. 10.1126/science.1094068 |
Reference:
|
[6] Peters, J., Mooij, J., Janzing, D., Schölkopf, B.: Causal discovery with continuous additive noise models..arXiv 1309.6779 (2013). |
Reference:
|
[7] Lauritzen, S. L.: Graphical Models..Oxford Science Publications, Clarendon Press, 1996. MR 1419991 |
Reference:
|
[8] Lauritzen, S. L., Sheehan, N. A.: Graphical models for genetic analyses..Statist. Sci. 18 (2003), 489-514. Zbl 1055.62126, MR 2059327, 10.1214/ss/1081443232 |
Reference:
|
[9] Pearl, J.: Causality: Models, Reasoning and Inference..Cambridge University Press, 2000. Zbl 1188.68291, MR 1744773 |
Reference:
|
[10] Reichenbach, H., Reichenbach, M.: The Direction of Time..California Library Reprint Series, University of California Press, 1956. |
Reference:
|
[11] Socolar, J. E. S., Kauffman, S. A.: Scaling in ordered and critical random boolean networks..Phys. Rev. Lett. 90 (2003), 068702. 10.1103/PhysRevLett.90.068702 |
Reference:
|
[12] Steudel, B., Ay, N.: Information-theoretic inference of common ancestors..CoRR, abs/1010.5720, 2010. |
Reference:
|
[13] Studený, M.: Probabilistic Conditional Independence Structures..Information Science and Statistics. Springer, 2005. Zbl 1070.62001 |
. |