Previous |  Up |  Next

Article

Title: Towards a geometric theory for left loops (English)
Author: Baez, Karla
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 3
Year: 2014
Pages: 315-323
Summary lang: English
.
Category: math
.
Summary: In [Mwambene E., Multiples of left loops and vertex-transitive graphs, Cent. Eur. J. Math. 3 (2005), no. 2, 254–250] it was proved that every vertex-transitive graph is the Cayley graph of a left loop with respect to a quasi-associative Cayley set. We use this result to show that Cayley graphs of left loops with respect to such sets have some properties in common with Cayley graphs of groups which can be used to study a geometric theory for left loops in analogy to that for groups. (English)
Keyword: left loops
Keyword: Cayley graphs
Keyword: rate of growth
Keyword: hyperbolicity
MSC: 05C25
MSC: 20N05
idZBL: Zbl 06391545
idMR: MR3225612
.
Date available: 2015-01-19T10:48:40Z
Last updated: 2016-10-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143810
.
Reference: [1] Baer R.: Nets and groups.Trans. Amer. Math. Soc. 46 (1939), 110–141. Zbl 0023.21502, MR 0000035, 10.1090/S0002-9947-1939-0000035-5
Reference: [2] de la Harpe P.: Topics in geometric group theory.University of Chicago Press, Chicago, IL, 2000. Zbl 0965.20025, MR 1786869
Reference: [3] Gauyaq G.: On quasi-Cayley graphs.Discrete Appl. Math. 77 (1997), 43–58. MR 1460327, 10.1016/S0166-218X(97)00098-X
Reference: [4] Griggs T.S.: Graphs obtained from Moufang loops and regular maps.J. Graph Theory 70 (2012), 427–434. Zbl 1247.05099, MR 2957056, 10.1002/jgt.20623
Reference: [5] Howie J.: Hyperbolic Groups. Lecture Notes.Heriot-Watt University.
Reference: [6] Mwambene E.: Characterization of regular graphs as loop graphs.Quaest. Math. 25 (2005), no. 2, 243–250. MR 2146390, 10.2989/16073600509486125
Reference: [7] Mwambene E.: Multiples of left loops and vertex-transitive graphs.Cent. Eur. J. Math. 3 (2005), no. 2, 254–250. Zbl 1117.05052, MR 2129915, 10.2478/BF02479200
Reference: [8] Mwambene E.: Representing vertex-transitive graphs on groupoids.Quaest. Math. 29 (2009), 279–284. Zbl 1107.05080, MR 2259722, 10.2989/16073600609486163
Reference: [9] Pflugfelder H.O.: Quasi-Groups and Loops: An Introduction.Heldermann, Berlin, 1990.
Reference: [10] Sabidussi G.: On a class of fixed-point-free graphs.Proc. Amer. Math. Soc. 9 (1958), no. 5, 800–804. Zbl 0091.37701, MR 0097068, 10.1090/S0002-9939-1958-0097068-7
Reference: [11] Sabidussi G.: Vertex-transitive graphs.Monatsh. Math. 68 (1964), 426–438. Zbl 0136.44608, MR 0175815, 10.1007/BF01304186
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-3_4.pdf 215.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo