Previous |  Up |  Next

Article

Keywords:
complete convergence; complete moment convergence; pairwise NQD random variables
Summary:
In this paper, some new results on complete convergence and complete moment convergence for sequences of pairwise negatively quadrant dependent random variables are presented. These results improve the corresponding theorems of S. X. Gan, P. Y. Chen (2008) and H. Y. Liang, C. Su (1999).
References:
[1] Baek, J. I., Ko, M. H., Kim, T. S.: On the complete convergence for weighted sums of dependent random variables under condition of weighted integrability. J. Korean Math. Soc. 45 (2008), 1101-1111. DOI 10.4134/JKMS.2008.45.4.1101 | MR 2422730 | Zbl 1148.60012
[2] Cabrera, M. O., Volodin, A. I.: Mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability. J. Math. Anal. Appl. 305 (2005), 644-658. DOI 10.1016/j.jmaa.2004.12.025 | MR 2131528 | Zbl 1065.60022
[3] Chow, Y. S.: On the rate of moment complete convergence of sample sums and extremes. Bull. Inst. Math., Acad. Sin. 16 (1988), 177-201. MR 1089491
[4] Gan, S. X., Chen, P. Y.: Some limit theorems for sequences of pairwise NQD random variables. Acta Math. Sci., Ser. B, Engl. Ed. 28 (2008), 269-281. MR 2411834 | Zbl 1174.60330
[5] Gan, S. X., Chen, P. Y.: Some remarks for sequences of pairwise NQD random variables. Wuhan Univ. J. Nat. Sci. 15 (2010), 467-470. DOI 10.1007/s11859-010-0685-8 | MR 2797770 | Zbl 1240.60063
[6] Hsu, P. L., Robbins, H.: Complete convergence and the law of large numbers. Proc. Natl. Acad. Sci. USA 33 (1947), 25-31. DOI 10.1073/pnas.33.2.25 | MR 0019852 | Zbl 0030.20101
[7] Joag-Dev, K., Proschan, F.: Negative association of random variables, with applications. Ann. Stat. 11 (1983), 286-295. DOI 10.1214/aos/1176346079 | MR 0684886 | Zbl 0508.62041
[8] Lehmann, E. L.: Some concepts of dependence. Ann. Math. Stat. 37 (1966), 1137-1153. DOI 10.1214/aoms/1177699260 | MR 0202228 | Zbl 0146.40601
[9] Li, R., Yang, W. G.: Strong convergence of pairwise NQD random sequences. J. Math. Anal. Appl. 344 (2008), 741-747. DOI 10.1016/j.jmaa.2008.02.053 | MR 2426304 | Zbl 1141.60012
[10] Liang, H. Y., Chen, Z. J., Su, C.: Convergence of Jamison-type weighted sums of pairwise negatively quadrant dependent random variables. Acta Math. Appl. Sin., Engl. Ser. 18 (2002), 161-168. DOI 10.1007/s102550200014 | MR 2010903 | Zbl 0998.60026
[11] Liang, H. Y., Su, C.: Complete convergence for weighted sums of NA sequences. Stat. Probab. Lett. 45 (1999), 85-95. DOI 10.1016/S0167-7152(99)00046-2 | MR 1718355 | Zbl 0967.60032
[12] Matuła, P.: A note on the almost sure convergence of sums of negatively dependent random variables. Stat. Probab. Lett. 15 (1992), 209-213. DOI 10.1016/0167-7152(92)90191-7 | MR 1190256 | Zbl 0925.60024
[13] Meng, Y. J., Lin, Z. Y.: On the weak laws of large numbers for arrays of random variables. Stat. Probab. Lett. 79 (2009), 2405-2414. DOI 10.1016/j.spl.2009.08.014 | MR 2556321 | Zbl 1179.60012
[14] Sung, S. H., Lisawadi, S., Volodin, A.: Weak laws of large numbers for arrays under a condition of uniform integrability. J. Korean Math. Soc. 45 (2008), 289-300. DOI 10.4134/JKMS.2008.45.1.289 | MR 2375136 | Zbl 1136.60319
[15] Wan, C. G.: Law of large numbers and complete convergence for pairwise NQD random sequences. Acta Math. Appl. Sin. 28 (2005), 253-261 Chinese. MR 2157985
[16] Wu, Q. Y.: Convergence properties of pairwise NQD random sequences. Acta Math. Sin. 45 (2002), 617-624 Chinese. MR 1915127 | Zbl 1008.60039
[17] Wu, Y. F., Guan, M.: Mean convergence theorems and weak laws of large numbers for weighted sums of dependent random variables. J. Math. Anal. Appl. 377 (2011), 613-623. DOI 10.1016/j.jmaa.2010.11.042 | MR 2769161 | Zbl 1208.60024
[18] Wu, Q. Y., Jiang, Y. Y.: The strong law of large numbers for pairwise NQD random variables. J. Syst. Sci. Complex. 24 (2011), 347-357. DOI 10.1007/s11424-011-8086-4 | MR 2802568 | Zbl 1227.60039
Partner of
EuDML logo