Previous |  Up |  Next

Article

Title: Unit groups of group algebras of some small groups (English)
Author: Tang, Gaohua
Author: Wei, Yangjiang
Author: Li, Yuanlin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 1
Year: 2014
Pages: 149-157
Summary lang: English
.
Category: math
.
Summary: Let $FG$ be a group algebra of a group $G$ over a field $F$ and ${\mathcal U}(FG)$ the unit group of $FG$. It is a classical question to determine the structure of the unit group of the group algebra of a finite group over a finite field. In this article, the structure of the unit group of the group algebra of the non-abelian group $G$ with order $21$ over any finite field of characteristic $3$ is established. We also characterize the structure of the unit group of $FA_4$ over any finite field of characteristic $3$ and the structure of the unit group of $FQ_{12}$ over any finite field of characteristic $2$, where $Q_{12}=\langle x, y; x^6=1, y^2=x^3, x^y=x^{-1} \rangle $. (English)
Keyword: group ring
Keyword: unit group
Keyword: augmentation ideal
Keyword: Jacobson radical
MSC: 16S34
MSC: 16U60
MSC: 20C05
idZBL: Zbl 06391483
idMR: MR3247451
DOI: 10.1007/s10587-014-0090-0
.
Date available: 2014-09-29T09:46:45Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143956
.
Reference: [1] Brockhaus, P.: On the radical of a group algebra.J. Algebra 95 (1985), 454-472. Zbl 0568.20010, MR 0801281, 10.1016/0021-8693(85)90117-6
Reference: [2] Chen, W., Xie, C., Tang, G.: The unit groups of $F_{p^n}G$ of groups with order $21$.J. Guangxi Teachers Education University 30 (2013), 14-20. MR 3162615
Reference: [3] Creedon, L.: The unit group of small group algebras and the minimum counterexample to the isomorphism problem.Int. J. Pure Appl. Math. 49 (2008), 531-537. Zbl 1192.16035, MR 2482633
Reference: [4] Creedon, L., Gildea, J.: The structure of the unit group of the group algebra $F_{2^k}D_8$.Can. Math. Bull. 54 (2011), 237-243. MR 2884238, 10.4153/CMB-2010-098-5
Reference: [5] Creedon, L., Gildea, J.: The structure of the unit group of the group algebra $F_{3^k}D_6$.Int. J. Pure Appl. Math. 45 (2008), 315-320. MR 2421868
Reference: [6] Gildea, J.: The structure of $\mathcal{U}(F_{5^k}D_{20})$.Int. Electron. J. Algebra (electronic only) 8 (2010), 153-160. MR 2660546
Reference: [7] Gildea, J.: The structure of the unit group of the group algebra $F_{3^k}(C_3\times D_6)$.Commun. Algebra 38 (2010), 3311-3317. MR 2724220, 10.1080/00927872.2010.482552
Reference: [8] Gildea, J.: The structure of the unit group of the group algebra of $F_{2^k}A_4$.Czech. Math. J. 61 (2011), 531-539. MR 2905421, 10.1007/s10587-011-0071-5
Reference: [9] Gildea, J.: The structure of the unit group of the group algebra of Paulis's group over any field of characteristic $2$.Int. J. Algebra Comput. 20 (2010), 721-729. Zbl 1205.16031, MR 2726571, 10.1142/S0218196710005856
Reference: [10] Gildea, J.: Units of group algebras of non-Abelian groups of order $16$ and exponent $4$ over $F_{2^k}$.Results Math. 61 (2012), 245-254. MR 2925119, 10.1007/s00025-011-0094-0
Reference: [11] Gildea, J., Monaghan, F.: Units of some group algebras of groups of order $12$ over any finite field of characteristic $3$.Algebra Discrete Math. 11 (2011), 46-58. Zbl 1256.16023, MR 2868359
Reference: [12] Nezhmetdinov, T. I.: Groups of units of finite commutative group rings.Commun. Algebra 38 (2010), 4669-4681. Zbl 1216.16026, MR 2805136, 10.1080/00927870903451918
Reference: [13] Passman, D. S.: The Algebraic Structure of Group Rings.Pure and Applied Mathematics Wiley, New York (1977). Zbl 0368.16003, MR 0470211
Reference: [14] Milies, C. Polcino, Sehgal, S. K.: An Introduction to Group Rings.Algebras and Applications 1 Kluwer Academic Publishers, Dordrecht (2002). MR 1896125, 10.1007/978-94-010-0405-3_3
Reference: [15] Sharma, R. K., Srivastava, J. B., Khan, M.: The unit group of $FA_4$.Publ. Math. 71 (2007), 21-26. Zbl 1135.16033, MR 2340031
Reference: [16] Tang, G., Gao, Y.: The unit group of $FG$ of groups with order $12$.Int. J. Pure Appl. Math. 73 (2011), 143-158. MR 2933951
.

Files

Files Size Format View
CzechMathJ_64-2014-1_14.pdf 261.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo