Title:
|
Unit groups of group algebras of some small groups (English) |
Author:
|
Tang, Gaohua |
Author:
|
Wei, Yangjiang |
Author:
|
Li, Yuanlin |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
64 |
Issue:
|
1 |
Year:
|
2014 |
Pages:
|
149-157 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $FG$ be a group algebra of a group $G$ over a field $F$ and ${\mathcal U}(FG)$ the unit group of $FG$. It is a classical question to determine the structure of the unit group of the group algebra of a finite group over a finite field. In this article, the structure of the unit group of the group algebra of the non-abelian group $G$ with order $21$ over any finite field of characteristic $3$ is established. We also characterize the structure of the unit group of $FA_4$ over any finite field of characteristic $3$ and the structure of the unit group of $FQ_{12}$ over any finite field of characteristic $2$, where $Q_{12}=\langle x, y; x^6=1, y^2=x^3, x^y=x^{-1} \rangle $. (English) |
Keyword:
|
group ring |
Keyword:
|
unit group |
Keyword:
|
augmentation ideal |
Keyword:
|
Jacobson radical |
MSC:
|
16S34 |
MSC:
|
16U60 |
MSC:
|
20C05 |
idZBL:
|
Zbl 06391483 |
idMR:
|
MR3247451 |
DOI:
|
10.1007/s10587-014-0090-0 |
. |
Date available:
|
2014-09-29T09:46:45Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143956 |
. |
Reference:
|
[1] Brockhaus, P.: On the radical of a group algebra.J. Algebra 95 (1985), 454-472. Zbl 0568.20010, MR 0801281, 10.1016/0021-8693(85)90117-6 |
Reference:
|
[2] Chen, W., Xie, C., Tang, G.: The unit groups of $F_{p^n}G$ of groups with order $21$.J. Guangxi Teachers Education University 30 (2013), 14-20. MR 3162615 |
Reference:
|
[3] Creedon, L.: The unit group of small group algebras and the minimum counterexample to the isomorphism problem.Int. J. Pure Appl. Math. 49 (2008), 531-537. Zbl 1192.16035, MR 2482633 |
Reference:
|
[4] Creedon, L., Gildea, J.: The structure of the unit group of the group algebra $F_{2^k}D_8$.Can. Math. Bull. 54 (2011), 237-243. MR 2884238, 10.4153/CMB-2010-098-5 |
Reference:
|
[5] Creedon, L., Gildea, J.: The structure of the unit group of the group algebra $F_{3^k}D_6$.Int. J. Pure Appl. Math. 45 (2008), 315-320. MR 2421868 |
Reference:
|
[6] Gildea, J.: The structure of $\mathcal{U}(F_{5^k}D_{20})$.Int. Electron. J. Algebra (electronic only) 8 (2010), 153-160. MR 2660546 |
Reference:
|
[7] Gildea, J.: The structure of the unit group of the group algebra $F_{3^k}(C_3\times D_6)$.Commun. Algebra 38 (2010), 3311-3317. MR 2724220, 10.1080/00927872.2010.482552 |
Reference:
|
[8] Gildea, J.: The structure of the unit group of the group algebra of $F_{2^k}A_4$.Czech. Math. J. 61 (2011), 531-539. MR 2905421, 10.1007/s10587-011-0071-5 |
Reference:
|
[9] Gildea, J.: The structure of the unit group of the group algebra of Paulis's group over any field of characteristic $2$.Int. J. Algebra Comput. 20 (2010), 721-729. Zbl 1205.16031, MR 2726571, 10.1142/S0218196710005856 |
Reference:
|
[10] Gildea, J.: Units of group algebras of non-Abelian groups of order $16$ and exponent $4$ over $F_{2^k}$.Results Math. 61 (2012), 245-254. MR 2925119, 10.1007/s00025-011-0094-0 |
Reference:
|
[11] Gildea, J., Monaghan, F.: Units of some group algebras of groups of order $12$ over any finite field of characteristic $3$.Algebra Discrete Math. 11 (2011), 46-58. Zbl 1256.16023, MR 2868359 |
Reference:
|
[12] Nezhmetdinov, T. I.: Groups of units of finite commutative group rings.Commun. Algebra 38 (2010), 4669-4681. Zbl 1216.16026, MR 2805136, 10.1080/00927870903451918 |
Reference:
|
[13] Passman, D. S.: The Algebraic Structure of Group Rings.Pure and Applied Mathematics Wiley, New York (1977). Zbl 0368.16003, MR 0470211 |
Reference:
|
[14] Milies, C. Polcino, Sehgal, S. K.: An Introduction to Group Rings.Algebras and Applications 1 Kluwer Academic Publishers, Dordrecht (2002). MR 1896125, 10.1007/978-94-010-0405-3_3 |
Reference:
|
[15] Sharma, R. K., Srivastava, J. B., Khan, M.: The unit group of $FA_4$.Publ. Math. 71 (2007), 21-26. Zbl 1135.16033, MR 2340031 |
Reference:
|
[16] Tang, G., Gao, Y.: The unit group of $FG$ of groups with order $12$.Int. J. Pure Appl. Math. 73 (2011), 143-158. MR 2933951 |
. |