Previous |  Up |  Next

Article

Keywords:
Leibniz algebra; dialgebra; dendriform algebra; pre-Lie algebra
Summary:
This is an extended version of a talk presented by the second author on the Third Mile High Conference on Nonassociative Mathematics (August 2013, Denver, CO). The purpose of this paper is twofold. First, we would like to review the technique developed in a series of papers for various classes of di-algebras and show how the same ideas work for tri-algebras. Second, we present a general approach to the definition of pre- and post-algebras which turns out to be equivalent to the construction of dendriform splitting. However, our approach is more algebraic and thus provides simpler way to prove various properties of pre- and post-algebras in general.
References:
[1] Aguiar M.: Pre-Poisson algebras. Lett. Math. Phys. 54 (2000), 263–277. DOI 10.1023/A:1010818119040 | MR 1846958 | Zbl 1032.17038
[2] Bai C., Bellier O., Guo L., Ni X.: Splitting of operations, Manin products, and Rota–Baxter operators. Int. Math. Res. Notes 3 (2013), 485–524. MR 3021790
[3] Bakalov B., D'Andrea A., Kac V.G.: Theory of finite pseudoalgebras. Adv. Math. 162 (2001), no. 1, 1–140. DOI 10.1006/aima.2001.1993 | MR 1849687 | Zbl 1001.16021
[4] Bremner M.R.: On the definition of quasi-Jordan algebra. Comm. Algebra 38 (2010), 4695–4704. DOI 10.1080/00927870903468375 | MR 2805138 | Zbl 1241.17001
[5] Bremner M.R., Felipe R., Sánchez-Ortega J.: Jordan triple disystems. Comput. Math. Appl. 63 (2012), 1039-1055. DOI 10.1016/j.camwa.2011.12.008 | MR 2892747 | Zbl 1247.17004
[6] Bremner M.R., Madariaga S.: Dendriform analogues of Lie and Jordan triple systems. Comm. Algebra, to appear, arXiv:1305.1389 [math.RA]. MR 3210406
[7] Bremner M.R., Peresi L.A., Sánchez-Ortega J.: Malcev dialgebras. Linear Multilinear Algebra 60 (2012), 1125–1141. DOI 10.1080/03081087.2011.651721 | MR 2983755 | Zbl 1280.17030
[8] Bremner M.R., Sánchez-Ortega J.: Leibniz triple systems. Commun. Contemp. Math. 16 (2014), 1350051 (19 pages); DOI: 10.1142/S021919971350051X. DOI 10.1142/S021919971350051X | MR 3189605
[9] Chapoton F.: Un endofoncteur de la catégorie des opérades. in: Loday J.-L., Frabetti A., Chapoton F., Goichot F. (Eds), Dialgebras and related operads, Lectures Notes in Mathematics, 1763, Springer, Berlin, 2001, pp. 105–110. DOI 10.1007/3-540-45328-8_4 | MR 1860996 | Zbl 0999.17004
[10] Cohn P.M.: On homomorphic images of special Jordan algebras. Canadian J. Math. 6 (1954), 253–264. DOI 10.4153/CJM-1954-026-9 | Zbl 0055.02704
[11] Dotsenko V., Khoroshkin A.: Character formulas for the operad of two compatible brackets and for the bihamiltonian operad. Funktsional. Anal. i Prilozhen. 41 (2007), no. 1, 1–17. DOI 10.1007/s10688-007-0001-3 | MR 2333979
[12] Giambruno A., Zaicev M.: On codimension growth of finitely generated associative algebras. Adv. Math. 140 (1998), no. 2, 145–155. DOI 10.1006/aima.1998.1766 | MR 1658530 | Zbl 0920.16012
[13] Ginzburg V., Kapranov M.: Koszul duality for operads. Duke Math. J. 76 (1994), no. 1, 203–272. DOI 10.1215/S0012-7094-94-07608-4 | MR 1301191 | Zbl 0855.18007
[14] Gubarev V.Yu., Kolesnikov P.S.: The Tits–Kantor–Koecher construction for Jordan dialgebras. Comm. Algebra 39 (2011), no. 2, 497–520. DOI 10.1080/00927871003591967 | MR 2773316 | Zbl 1272.17032
[15] Gubarev V.Yu., Kolesnikov P.S.: Embedding of dendriform algebras into Rota–Baxter algebras. Cent. Eur. J. Math. 11 (2013), no. 2, 226–245. DOI 10.2478/s11533-012-0138-z | MR 3000640 | Zbl 1262.18009
[16] Hou D.P., Ni X., Bai C.: Pre-Jordan algebras. Math. Scand. 112 (2013), no. 1, 19–48. MR 3057597
[17] Jacobson N.: Structure and Representations of Jordan Algebras. American Mathematical Society, Providence, 1968. MR 0251099 | Zbl 0218.17010
[18] Kolesnikov P.S.: Varieties of dialgebras and conformal algebras. Sib. Math. J. 49 (2008), no. 2, 257–272. DOI 10.1007/s11202-008-0026-8 | MR 2419658 | Zbl 1164.17002
[19] Kolesnikov P.S., Voronin V.Yu.: On special identities for dialgebras. Linear Multilinear Algebra 61 (2013), no. 3, 377–391. DOI 10.1080/03081087.2012.686108 | MR 3003431 | Zbl 1273.17003
[20] Loday J.-L.: Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Enseign. Math. 39 (1993), 269–293. MR 1252069 | Zbl 0806.55009
[21] Loday J.-L.: Dialgebras. in: Loday J.-L., Frabetti A., Chapoton F., Goichot F. (Eds), Dialgebras and related operads, Lectures Notes in Mathematics, 1763, Springer, Berlin, 2001, pp. 105–110. MR 1860994 | Zbl 0999.17002
[22] Loday J.-L., Pirashvili T.: Universal enveloping algebras of Leibniz algebras and (co)homology. Math. Ann. 296 (1993), 139–158. DOI 10.1007/BF01445099 | MR 1213376 | Zbl 0821.17022
[23] Loday J.-L., Ronco M.: Trialgebras and families of polytopes. in: Goerss P.G., Priddy S. (Eds.), Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-theory, Contemp. Math. 346 (2004), 369–398. DOI 10.1090/conm/346/06296 | MR 2066507 | Zbl 1065.18007
[24] Loday J.-L., Vallette B.: Algebraic Operads. Gründlehren der mathematischen Wissenschaften, 346, Springer, Heidelberg, 2012. Zbl 1260.18001
[25] Pei J., Bai C., Guo L.: Splitting of operads and Rota–Baxter operators on operads. arXiv:1306.3046 [math.CT].
[26] Strohmayer H.: Operads of compatible structures and weighted partitions. J. Pure Appl. Algebra 212 (2008), 2522–2534. DOI 10.1016/j.jpaa.2008.04.009 | MR 2440264 | Zbl 1149.18006
[27] Uchino K.: On distributive laws in derived bracket construction and homotopy theory of derived bracket Leibniz algebras. arXiv:1110.4188v5 [math.QA].
[28] Vallette B.: Homology of generalized partition posets. J. Pure Appl. Algebra 208 (2007), no. 2, 699–725. DOI 10.1016/j.jpaa.2006.03.012 | MR 2277706 | Zbl 1109.18002
[29] Vallette B.: Manin products, Koszul duality, Loday algebras and Deligne conjecture. J. Reine Angew. Math. 620 (2008), 105–164. MR 2427978 | Zbl 1159.18001
[30] Velasquez R., Felipe R.: Quasi-Jordan algebras. Comm. Algebra 36 (2008), no. 4, 1580–1602. DOI 10.1080/00927870701865996 | MR 2410352 | Zbl 1188.17022
[31] Voronin V.: Special and exceptional Jordan dialgebras. J. Algebra Appl. 11 (2012), no. 2, 23 p. DOI 10.1142/S0219498811005531 | MR 2925443
[32] Zhevlakov K.A., Slin'ko A.M., Shestakov I.P., Shirshov A.I.: Rings That Are Nearly Associative. Academic Press, New York, 1982. MR 0668355 | Zbl 0487.17001
Partner of
EuDML logo