Title:
|
Mapping theorems on countable tightness and a question of F. Siwiec (English) |
Author:
|
Lin, Shou |
Author:
|
Zhang, Jinhuang |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
55 |
Issue:
|
4 |
Year:
|
2014 |
Pages:
|
523-536 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper $ss$-quotient maps and $ssq$-spaces are introduced. It is shown that (1) countable tightness is characterized by $ss$-quotient maps and quotient maps; (2) a space has countable tightness if and only if it is a countably bi-quotient image of a locally countable space, which gives an answer for a question posed by F. Siwiec in 1975; (3) $ssq$-spaces are characterized as the $ss$-quotient images of metric spaces; (4) assuming $2^\omega<2^{\omega_1}$, a compact $T_2$-space is an $ssq$-space if and only if every countably compact subset is strongly sequentially closed, which improves some results about sequential spaces obtained by M. Ismail and P. Nyikos in 1980. (English) |
Keyword:
|
countable tightness |
Keyword:
|
strongly sequentially closed sets |
Keyword:
|
sequentially closed sets |
Keyword:
|
quotient maps |
Keyword:
|
countably bi-quotient maps |
Keyword:
|
locally countable spaces |
MSC:
|
54B15 |
MSC:
|
54D55 |
MSC:
|
54E40 |
idZBL:
|
Zbl 06391560 |
idMR:
|
MR3269014 |
. |
Date available:
|
2014-10-09T10:01:07Z |
Last updated:
|
2017-01-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143976 |
. |
Reference:
|
[1] Arhangel'skiĭ A.V.: Some types of factor mappings and the relations between classes of topological spaces.(in Russian), Dokl. Akad. Nauk SSSR 153 (1963), 743–746. MR 0158362 |
Reference:
|
[2] Balogh Z.: On compact Hausdorff spaces of countably tightness.Proc. Amer. Math. Soc. 105 (1989), 755–764. MR 0930252, 10.1090/S0002-9939-1989-0930252-6 |
Reference:
|
[3] Boone J.R.: On $k$-quotient mappings.Pacific J. Math. 51 (1974), 369–377. Zbl 0263.54003, MR 0358665, 10.2140/pjm.1974.51.369 |
Reference:
|
[4] Boone J.R., Siwiec F.: Sequentially quotient mappings.Czechoslovak Math. J. 26 (1976), 174–182. Zbl 0334.54003, MR 0402689 |
Reference:
|
[5] Čech E., Pospíšil B.: Sur les espaces compacts.Publ. Fac. Sci. Univ. Masaryk Brno 258 (1938), 3–7. Zbl 0019.08903 |
Reference:
|
[6] Engelking R.: General Topology.(revised and completed edition), Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[7] Franklin S.P.: Spaces in which sequences suffice.Fund. Math. 57 (1965), 107–115. Zbl 0168.43502, MR 0180954 |
Reference:
|
[8] Franklin S.P., Rajagopalan M.: Some examples in topology.Trans. Amer. Math. Soc. 155 (1971), 305–314. Zbl 0217.48104, MR 0283742, 10.1090/S0002-9947-1971-0283742-7 |
Reference:
|
[9] Gruenhage G., Michael E.A., Tanaka Y.: Spaces determined by point-countable covers.Pacific J. Math. 113 (1984), 303–332. Zbl 0561.54016, MR 0749538, 10.2140/pjm.1984.113.303 |
Reference:
|
[10] Hodel R.: Cardinal functions I.in: K. Kunen and J.E. Vaughan, eds., Handbook of Set-theoretic Topology, Elsevier Science Publishers B.V., Amsterdam, 1984, pp. 1–61. Zbl 0559.54003, MR 0776620 |
Reference:
|
[11] Hong W.C.: A note on spaces which have countable tightness.Commun. Korean Math. Soc. 26 (2011), 297–304. Zbl 1214.54004, MR 2816567, 10.4134/CKMS.2011.26.2.297 |
Reference:
|
[12] Ismail M., Nyikos P.: On spaces in which countably compact subsets are closed, and hereditary properties.Topology Appl. 10 (1980), 281–292. MR 0585273, 10.1016/0166-8641(80)90027-9 |
Reference:
|
[13] Lin S.: Generalized Metric Spaces and Maps.Second Edition, China Science Press, Beijing, 2007. Zbl 1159.54002, MR 2323470 |
Reference:
|
[14] Lin S., Li K., Ge Y.: Convergent-sequence spaces and sequence-covering mappings.Houston J. Math. 39 (2013), 1367–1384. MR 3164722 |
Reference:
|
[15] Lin S., Zheng C.: The $k$-quotient images of metric spaces.Commun. Korean Math. Soc. 27 (2012), 377–384. Zbl 1241.54019, MR 2962531, 10.4134/CKMS.2012.27.2.377 |
Reference:
|
[16] Lin S., Zhu Z.: A note on countably bi-quotient mappings.Kodai Math. J. 35 (2012), 392–402. Zbl 1269.54006, MR 2951265, 10.2996/kmj/1341401059 |
Reference:
|
[17] Lin S., Zhu Z.: Workshop lecture on the images of some metric spaces.(in Chinese), Adv. Math. (China) 42 (2013), 129–137. MR 3112898 |
Reference:
|
[18] Liu C.: Notes on closed mappings.Houston J. Math. 33 (2007), 249–259. Zbl 1133.54018, MR 2287853 |
Reference:
|
[19] Michael E.A.: A quintuple quotient quest.General Topology Appl. 2 (1972), 91–138. Zbl 0238.54009, MR 0309045, 10.1016/0016-660X(72)90040-2 |
Reference:
|
[20] Moore R.C., Mrowka S.G.: Topologies determined by countable objects.Notices Amer. Math. Soc. 11 (1964), 554. |
Reference:
|
[21] Mynard F.: First-countability, sequentiality and tightness of the upper Kuratowski convergence.Rocky Mountain J. Math. 34 (2004), 733–758. Zbl 1064.54017, MR 2038536, 10.1216/rmjm/1181069877 |
Reference:
|
[22] Nyikos P.J.: Problem section.Topology Proc. 2 (1977), 658–688. Zbl 0604.54001 |
Reference:
|
[23] Nyikos P.J., Vaughan J.E.: The Scarborough-Stone problem for Hausdorff spaces.Topology Appl. 44 (1992), 309–316. Zbl 0758.54010, MR 1173267, 10.1016/0166-8641(92)90103-7 |
Reference:
|
[24] Ostaszewski A.: On countably compact, perfectly normal spaces.J. London Math. Soc. 14 (1976), 505–516. Zbl 0348.54014, MR 0438292, 10.1112/jlms/s2-14.3.505 |
Reference:
|
[25] Sakai M.: Quotient maps onto submaximal spaces.Topology Appl. 164 (2014), 248–258. Zbl 1291.54023, MR 3160480, 10.1016/j.topol.2014.01.010 |
Reference:
|
[26] Siwiec F.: Sequence-covering and countably bi-quotient mappings.General Topology Appl. 1 (1971), 143–154. Zbl 0218.54016, MR 0288737, 10.1016/0016-660X(71)90120-6 |
Reference:
|
[27] Siwiec F.: Generalizations of the first axiom of countability.Rocky Mountain J. Math. 5 (1975), 1–60. Zbl 0294.54021, MR 0358699, 10.1216/RMJ-1975-5-1-1 |
Reference:
|
[28] Steen L.A., Seebach J.A., Jr.: Counterexamples in Topology.reprint of the second (1978) edition, Dover Publications Inc., Mineola, NY, 1995. Zbl 0386.54001, MR 1382863 |
Reference:
|
[29] Zhu J.P.: $w$-spaces and $w$-maps.Science Bull. (China) 32 (1987), 68–69. |
. |