Previous |  Up |  Next

Article

Title: Mapping theorems on countable tightness and a question of F. Siwiec (English)
Author: Lin, Shou
Author: Zhang, Jinhuang
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 4
Year: 2014
Pages: 523-536
Summary lang: English
.
Category: math
.
Summary: In this paper $ss$-quotient maps and $ssq$-spaces are introduced. It is shown that (1) countable tightness is characterized by $ss$-quotient maps and quotient maps; (2) a space has countable tightness if and only if it is a countably bi-quotient image of a locally countable space, which gives an answer for a question posed by F. Siwiec in 1975; (3) $ssq$-spaces are characterized as the $ss$-quotient images of metric spaces; (4) assuming $2^\omega<2^{\omega_1}$, a compact $T_2$-space is an $ssq$-space if and only if every countably compact subset is strongly sequentially closed, which improves some results about sequential spaces obtained by M. Ismail and P. Nyikos in 1980. (English)
Keyword: countable tightness
Keyword: strongly sequentially closed sets
Keyword: sequentially closed sets
Keyword: quotient maps
Keyword: countably bi-quotient maps
Keyword: locally countable spaces
MSC: 54B15
MSC: 54D55
MSC: 54E40
idZBL: Zbl 06391560
idMR: MR3269014
.
Date available: 2014-10-09T10:01:07Z
Last updated: 2017-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143976
.
Reference: [1] Arhangel'skiĭ A.V.: Some types of factor mappings and the relations between classes of topological spaces.(in Russian), Dokl. Akad. Nauk SSSR 153 (1963), 743–746. MR 0158362
Reference: [2] Balogh Z.: On compact Hausdorff spaces of countably tightness.Proc. Amer. Math. Soc. 105 (1989), 755–764. MR 0930252, 10.1090/S0002-9939-1989-0930252-6
Reference: [3] Boone J.R.: On $k$-quotient mappings.Pacific J. Math. 51 (1974), 369–377. Zbl 0263.54003, MR 0358665, 10.2140/pjm.1974.51.369
Reference: [4] Boone J.R., Siwiec F.: Sequentially quotient mappings.Czechoslovak Math. J. 26 (1976), 174–182. Zbl 0334.54003, MR 0402689
Reference: [5] Čech E., Pospíšil B.: Sur les espaces compacts.Publ. Fac. Sci. Univ. Masaryk Brno 258 (1938), 3–7. Zbl 0019.08903
Reference: [6] Engelking R.: General Topology.(revised and completed edition), Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [7] Franklin S.P.: Spaces in which sequences suffice.Fund. Math. 57 (1965), 107–115. Zbl 0168.43502, MR 0180954
Reference: [8] Franklin S.P., Rajagopalan M.: Some examples in topology.Trans. Amer. Math. Soc. 155 (1971), 305–314. Zbl 0217.48104, MR 0283742, 10.1090/S0002-9947-1971-0283742-7
Reference: [9] Gruenhage G., Michael E.A., Tanaka Y.: Spaces determined by point-countable covers.Pacific J. Math. 113 (1984), 303–332. Zbl 0561.54016, MR 0749538, 10.2140/pjm.1984.113.303
Reference: [10] Hodel R.: Cardinal functions I.in: K. Kunen and J.E. Vaughan, eds., Handbook of Set-theoretic Topology, Elsevier Science Publishers B.V., Amsterdam, 1984, pp. 1–61. Zbl 0559.54003, MR 0776620
Reference: [11] Hong W.C.: A note on spaces which have countable tightness.Commun. Korean Math. Soc. 26 (2011), 297–304. Zbl 1214.54004, MR 2816567, 10.4134/CKMS.2011.26.2.297
Reference: [12] Ismail M., Nyikos P.: On spaces in which countably compact subsets are closed, and hereditary properties.Topology Appl. 10 (1980), 281–292. MR 0585273, 10.1016/0166-8641(80)90027-9
Reference: [13] Lin S.: Generalized Metric Spaces and Maps.Second Edition, China Science Press, Beijing, 2007. Zbl 1159.54002, MR 2323470
Reference: [14] Lin S., Li K., Ge Y.: Convergent-sequence spaces and sequence-covering mappings.Houston J. Math. 39 (2013), 1367–1384. MR 3164722
Reference: [15] Lin S., Zheng C.: The $k$-quotient images of metric spaces.Commun. Korean Math. Soc. 27 (2012), 377–384. Zbl 1241.54019, MR 2962531, 10.4134/CKMS.2012.27.2.377
Reference: [16] Lin S., Zhu Z.: A note on countably bi-quotient mappings.Kodai Math. J. 35 (2012), 392–402. Zbl 1269.54006, MR 2951265, 10.2996/kmj/1341401059
Reference: [17] Lin S., Zhu Z.: Workshop lecture on the images of some metric spaces.(in Chinese), Adv. Math. (China) 42 (2013), 129–137. MR 3112898
Reference: [18] Liu C.: Notes on closed mappings.Houston J. Math. 33 (2007), 249–259. Zbl 1133.54018, MR 2287853
Reference: [19] Michael E.A.: A quintuple quotient quest.General Topology Appl. 2 (1972), 91–138. Zbl 0238.54009, MR 0309045, 10.1016/0016-660X(72)90040-2
Reference: [20] Moore R.C., Mrowka S.G.: Topologies determined by countable objects.Notices Amer. Math. Soc. 11 (1964), 554.
Reference: [21] Mynard F.: First-countability, sequentiality and tightness of the upper Kuratowski convergence.Rocky Mountain J. Math. 34 (2004), 733–758. Zbl 1064.54017, MR 2038536, 10.1216/rmjm/1181069877
Reference: [22] Nyikos P.J.: Problem section.Topology Proc. 2 (1977), 658–688. Zbl 0604.54001
Reference: [23] Nyikos P.J., Vaughan J.E.: The Scarborough-Stone problem for Hausdorff spaces.Topology Appl. 44 (1992), 309–316. Zbl 0758.54010, MR 1173267, 10.1016/0166-8641(92)90103-7
Reference: [24] Ostaszewski A.: On countably compact, perfectly normal spaces.J. London Math. Soc. 14 (1976), 505–516. Zbl 0348.54014, MR 0438292, 10.1112/jlms/s2-14.3.505
Reference: [25] Sakai M.: Quotient maps onto submaximal spaces.Topology Appl. 164 (2014), 248–258. Zbl 1291.54023, MR 3160480, 10.1016/j.topol.2014.01.010
Reference: [26] Siwiec F.: Sequence-covering and countably bi-quotient mappings.General Topology Appl. 1 (1971), 143–154. Zbl 0218.54016, MR 0288737, 10.1016/0016-660X(71)90120-6
Reference: [27] Siwiec F.: Generalizations of the first axiom of countability.Rocky Mountain J. Math. 5 (1975), 1–60. Zbl 0294.54021, MR 0358699, 10.1216/RMJ-1975-5-1-1
Reference: [28] Steen L.A., Seebach J.A., Jr.: Counterexamples in Topology.reprint of the second (1978) edition, Dover Publications Inc., Mineola, NY, 1995. Zbl 0386.54001, MR 1382863
Reference: [29] Zhu J.P.: $w$-spaces and $w$-maps.Science Bull. (China) 32 (1987), 68–69.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-4_9.pdf 266.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo