Previous |  Up |  Next

Article

Title: State elimination for nonlinear neutral state-space systems (English)
Author: Halás, Miroslav
Author: Bisták, Pavol
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 50
Issue: 4
Year: 2014
Pages: 473-490
Summary lang: English
.
Category: math
.
Summary: The problem of finding an input-output representation of a nonlinear state space system, usually referred to as the state elimination, plays an important role in certain control problems. Though, it has been shown that such a representation, at least locally, always exists for both the systems with and without delays, it might be a neutral input-output differential equation in the former case, even when one starts with a retarded system. In this paper the state elimination is therefore extended further to nonlinear neutral state-space systems, and it is shown that also in such a case an input-output representation, at least locally, always exists. In general, it represents a neutral system again. Computational aspects related to the state elimination problem are discussed as well. (English)
Keyword: nonlinear time-delay systems
Keyword: neutral systems
Keyword: input-output representation
Keyword: linear algebraic methods
Keyword: Gröbner bases
MSC: 34K35
MSC: 34K40
MSC: 93B25
MSC: 93C10
idZBL: Zbl 06386422
idMR: MR3275080
DOI: 10.14736/kyb-2014-4-0473
.
Date available: 2014-11-06T14:48:18Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143978
.
Reference: [1] Anguelova, M., Wennberg, B.: State elimination and identifiability of the delay parameter for nonlinear time-delay systems..Automatica 44 (2008), 1373-1378. Zbl 1283.93084, MR 2531805, 10.1016/j.automatica.2007.10.013
Reference: [2] Becker, T., Weispfenning, V.: Gröbner Bases..Springer-Verlag, New York 1993. Zbl 0772.13010, MR 1213453
Reference: [3] Buchberger, B., Winkler, F.: Gröbner Bases and Applications..Cambridge University Press, Cambridge 1998. Zbl 0883.00014, MR 1699811
Reference: [4] Cohn, P. M.: Free Rings and Their Relations..Academic Press, London 1985. Zbl 0659.16001, MR 0800091
Reference: [5] Conte, G., Moog, C. H., Perdon, A. M.: Algebraic Methods for Nonlinear Control Systems. Theory and Applications. Second edition..Communications and Control Engineering. Springer-Verlag, London 2007. MR 2305378
Reference: [6] Cox, D., Little, J., O'Shea, D.: Ideals, Varieties, and Algorithms..Springer-Verlag, New York 2007. Zbl 1118.13001, MR 2290010
Reference: [7] Diop, S.: Elimination in control theory..Math. Contr. Signals Syst. 4 (1991), 72-86. Zbl 0727.93025, MR 1082853, 10.1007/BF02551378
Reference: [8] Glad, S. T.: Nonlinear regulators and Ritt's remainder algorithm..In: Analysis of Controlled Dynamical Systems (B. Bournard, B. Bride, J. P. Gauthier, and I. Kupka, eds.), Progress in systems and control theory 8, Birkhäuser, Boston 1991, pp. 224-232 Zbl 0794.93042, MR 1131996
Reference: [9] Glumineau, A., Moog, C. H., Plestan, F.: New algebro-geometric conditions for the linearization by input-output injection..IEEE Trans. Automat. Control 41 (1996), 598-603. Zbl 0851.93018, MR 1385333, 10.1109/9.489283
Reference: [10] Halás, M.: An algebraic framework generalizing the concept of transfer functions to nonlinear systems..Automatica 44 (2008), 1181-1190. Zbl 1283.93077, MR 2531783, 10.1016/j.automatica.2007.09.008
Reference: [11] Halás, M.: Nonlinear time-delay systems: a polynomial approach using Ore algebras..In: Topics in Time-Delay Systems: Analysis, Algorithms and Control (J. J. Loiseau, W. Michiels, S. Niculescu, and R. Sipahi, eds.), Lecture Notes in Control and Information Sciences, Springer, 2009. MR 2573747
Reference: [12] Halás, M.: Computing an input-output representation of a neutral state-space system..In: IFAC Workshop on Time Delay Systems, Grenoble 2013.
Reference: [13] Halás, M., Anguelova, M.: When retarded nonlinear time-delay systems admit an input-output representation of neutral type..Automatica 49 (2013) 561-567. Zbl 1259.93066, MR 3004725, 10.1016/j.automatica.2012.11.027
Reference: [14] Halás, M., Kotta, Ü.: A transfer function approach to the realisation problem of nonlinear systems..Internat. J. Control 85 (2012), 320-331. Zbl 1282.93078, MR 2881269, 10.1080/00207179.2011.651748
Reference: [15] Halás, M., Kotta, Ü., Moog, C. H.: Transfer function approach to the model matching problem of nonlinear systems..In: 17th IFAC World Congress, Seoul 2008.
Reference: [16] Halás, M., Moog, C. H.: A polynomial solution to the model matching problem of nonlinear time-delay systems..In: European Control Conference, Budapest 2009.
Reference: [17] Huba, M.: Comparing 2DOF PI and predictive disturbance observer based filtered PI control..J. Process Control 23 (2013), 1379-1400. 10.1016/j.jprocont.2013.09.007
Reference: [18] Kotta, Ü., Bartosiewicz, Z., Pawluszewicz, E., Wyrwas, M.: Irreducibility, reduction and transfer equivalence of nonlinear input-output equations on homogeneous time scales..Syst. Control Lett. 58 (2009), 646-651. Zbl 1184.93025, MR 2554398, 10.1016/j.sysconle.2009.04.006
Reference: [19] Kotta, Ü., Kotta, P., Halás, M.: Reduction and transfer equivalence of nonlinear control systems: unification and extension via pseudo-linear algebra..Kybernetika 46 (2010), 831-849. Zbl 1205.93027, MR 2778925
Reference: [20] Márquez-Martínez, L. A., Moog, C. H., Velasco-Villa, M.: The structure of nonlinear time-delay systems..Kybernetika 36 (2000), 53-62. Zbl 1249.93102, MR 1760888
Reference: [21] Márquez-Martínez, L. A., Moog, C. H., Velasco-Villa, M.: Observability and observers for nonlinear systems with time delays..Kybernetika 38 (2002), 445-456. Zbl 1265.93060, MR 1937139
Reference: [22] Ohtsuka, T.: Model structure simplification of nonlinear systems via immersion..IEEE Trans. Automat. Control 50 (2005), 607-618. MR 2141563, 10.1109/TAC.2005.847062
Reference: [23] Ore, O.: Linear equations in non-commutative fields..Ann. Math. 32 (1931), 463-477. Zbl 0001.26601, MR 1503010, 10.2307/1968245
Reference: [24] Ore, O.: Theory of non-commutative polynomials..Ann. Math. 34(1933), 480-508. Zbl 0007.15101, MR 1503119, 10.2307/1968173
Reference: [25] Picard, P., Lafay, J. F., Kučera, V.: Model matching for linear systems with delays and 2D systems..Automatica 34 (1998), 183-191. Zbl 0937.93007, MR 1609823, 10.1016/S0005-1098(98)00177-0
Reference: [26] Rudolph, J.: Viewing input-output system equivalence from differential algebra..J. Math. Systems Estim. Control 4 (1994), 353-383. Zbl 0806.93012, MR 1298841
Reference: [27] Walther, U., Georgiou, T. T., Tannenbaum, A.: On the computation of switching surfaces in optimal control: a Gröbner basis approach..IEEE Trans. Automat. Control 46 (2001), 534-540. Zbl 0998.49023, MR 1822964, 10.1109/9.917655
Reference: [28] Xia, X., Márquez-Martínez, L. A., Zagalak, P., Moog, C. H.: Analysis of nonlinear time-delay systems using modules over non-commutative rings..Automatica 38 (2002), 1549-1555. MR 2134034, 10.1016/S0005-1098(02)00051-1
Reference: [29] Zhang, J., Xia, X., Moog, C. H.: Parameter identifiability of nonlinear systems with time-delay..IEEE Trans. Automat. Control 51 (2006), 371-375. MR 2201731, 10.1109/TAC.2005.863497
Reference: [30] Zheng, Y., Willems, J., Zhang, C.: A polynomial approach to nonlinear system controllability..IEEE Trans. Automat. Control 46 (2001), 1782-1788. Zbl 1175.93045, MR 1864751, 10.1109/9.964691
.

Files

Files Size Format View
Kybernetika_50-2014-4_1.pdf 339.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo