Previous |  Up |  Next

Article

Title: Optimal, adaptive and single state feedback control for a 3D chaotic system with golden proportion equilibria (English)
Author: Saberi Nik, Hassan
Author: He, Ping
Author: Talebian, Sayyed Taha
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 50
Issue: 4
Year: 2014
Pages: 596-615
Summary lang: English
.
Category: math
.
Summary: In this paper, the problems on purposefully controlling chaos for a three-dimensional quadratic continuous autonomous chaotic system, namely the chaotic Pehlivan-Uyaroglu system are investigated. The chaotic system, has three equilibrium points and more interestingly the equilibrium points have golden proportion values, which can generate single folded attractor. We developed an optimal control design, in order to stabilize the unstable equilibrium points of this system. Furthermore, we propose Lyapunov stability to control the Pehlivan-Uyaroglu system with unknown parameters by way of a feedback control approach and a single controller. Numerical simulations are performed to demonstrate the effectiveness of the proposed control strategies. (English)
Keyword: autonomous chaotic system
Keyword: optimal control
Keyword: adaptive control
Keyword: single state feedback control
Keyword: Pontryagin Minimum Principle
MSC: 34D20
MSC: 34H10
MSC: 37D45
MSC: 37N35
MSC: 49M20
MSC: 58E25
MSC: 93C10
idZBL: Zbl 06386429
idMR: MR3275087
DOI: 10.14736/kyb-2014-4-0596
.
Date available: 2014-11-06T15:06:36Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143986
.
Reference: [1] Yagasaki, K.: Chaos in a pendulum with feedback control..Nonlinear Dyn. 6 (1994), 125-142. 10.1007/BF00044981
Reference: [2] Han, S. K., Kerrer, C., Kuramoto, Y.: Dephasing and bursting in coupled neural oscillators..Phys. Rev. Lett. 75 (1995), 3190-3193. 10.1103/PhysRevLett.75.3190
Reference: [3] Cuomo, K. M., Oppenheim, A. V.: Circuit implementation of synchronized chaos with applications to communications..Phys. Rev. Lett. 71 (1993), 65-68. 10.1103/PhysRevLett.71.65
Reference: [4] Nik, H. Saberi, Gorder, R. A. Van: Competitive modes for the Baier-Sahle hyperchaotic flow in arbitrary dimensions..Nonlinear Dyn. 74 (2013), 3, 581-590. MR 3117644
Reference: [5] Ott, E., Grebogi, C., Yorke, J. A.: Controlling chaos..Phys. Rev. Lett. 64 (1990), 1196-1199. Zbl 0964.37502, MR 1041523, 10.1103/PhysRevLett.64.1196
Reference: [6] Azhmyakov, V., Basin, M. V., Gil-Garcia, A. E.: Optimal control processes associated with a class of discontinuous control systems: applications to sliding mode dynamics..Kybernetika 50 (2014), 1, 5-18. MR 3195001
Reference: [7] Jiang, Y., Dai, J.: Robust control of chaos in modified FitzHugh-Nagumo neuron model under external electrical stimulation based on internal model principle..Kybernetika 47 (2011), 4, 612-629. Zbl 1227.93033, MR 2884864
Reference: [8] Wang, H., Han, Z Z., Xie, Q. Y., Zhang, W.: Finite-time chaos control of unified chaotic systems with uncertain parameters..Nonlinear Dyn. 55 (2009), 323-328. Zbl 1170.70401, MR 2472222
Reference: [9] Lynnyk, V., Čelikovský, S.: On the anti-synchronization detection for the generalized Lorenz system and its applications to secure encryption..Kybernetika 46 (2010), 1, 1-18. Zbl 1190.93038, MR 2666891
Reference: [10] Sun, K., Liu, X., Zhu, C., Sprott, J. C.: Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system..Nonlinear Dyn. 69 (2012), 1383-1391. MR 2943392
Reference: [11] Wei, Z., Wang, Z.: Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium..Kybernetika 49 (2013), 2, 359-374. Zbl 1276.34043, MR 3085401
Reference: [12] Effati, S., Nik, H. Saberi, Jajarmi, A.: Hyperchaos control of the hyperchaotic Chen system by optimal control design..Nonlinear Dyn. 73 (2013), 499-508. MR 3080686
Reference: [13] Effati, S., Saberi-Nadjafi, J., Nik, H. Saberi: Optimal and adaptive control for a kind of 3D chaotic and 4D hyper-chaotic systems..Appl. Math. Modell. 38 (2014), 759-774. MR 3141658, 10.1016/j.apm.2013.06.025
Reference: [14] Nik, H. Saberi, Golchaman, M.: Chaos control of a bounded 4D chaotic system..Neural Comput. Appl. (2013).
Reference: [15] Yu, S., Lu, J., Yu, X., Chen, G.: Design and implementation of grid multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops..IEEE Trans. Circuits Syst. 59-I (2012), 5, 1015-1028. MR 2924533, 10.1109/TCSI.2011.2180429
Reference: [16] Lu, J., Yu, S., Leung, H., Chen, G.: Experimental verification of multidirectional multiscroll chaotic attractors..IEEE Trans. Circuits Syst. 53 (2006), 1, 149-165. 10.1109/TCSI.2005.854412
Reference: [17] Wang, Z. H., Sun, Y. X., Qi, G. Y., Wyk, B. J.: The effects of fractional order on a 3-D quadratic autonomous system with four-wing attractor..Nonlinear Dyn. 62 (2010), 139-150. Zbl 1209.34060, MR 2736983
Reference: [18] Cam, U.: A new high performance realization of mixed-mode chaotic circuit using current-feedback operational amplifiers..Comput. Electr. Engrg. 30 (2004), 4, 281-290. Zbl 1057.94518, 10.1016/j.compeleceng.2004.06.001
Reference: [19] Yu, S., Lü, J., Tang, W., Chen, G.: A general multiscroll Lorenz system family and its realization via digital signal processors..Chaos 16 (2006), 033126. Zbl 1151.94432, 10.1063/1.2336739
Reference: [20] Pehlivan, I., Uyaroglu, Y.: Rikitake attractor and its synchronization application for secure communication systems..J. Appl. Sci. 7 (2007), 7, 232-236. 10.3923/jas.2007.232.236
Reference: [21] Pehlivan, I., Uyaroglu, Y.: A new 3D chaotic system with golden proportion equilibria: Analysis and electronic circuit realization..Comput. Electr. Engrg. 38 (2012), 6, 1777-1784. 10.1016/j.compeleceng.2012.08.007
Reference: [22] Kirk, D. E.: Optimal Control Theory: An Introduction..Prentice-Hall, 1970.
Reference: [23] Zhong, W., Stefanovski, J., Dimirovski, G., Zhao, J.: Decentralized control and synchronization of time-varying complex dynamical network..Kybernetika 45 (2009), 151-167. Zbl 1158.34332, MR 2489586
Reference: [24] Chen, Y., Lu, J., Lin, Z.: Consensus of discrete-time multi-agent systems with transmission nonlinearity..Automatica 49 (2013), 6, 1768-1775. MR 3049226, 10.1016/j.automatica.2013.02.021
Reference: [25] Lu, J., Chen, G.: A time-varying complex dynamical network model and its controlled synchronization criteria..IEEE Trans. Automat. Control 50 (2005), 6, 841-846. MR 2142000, 10.1109/TAC.2005.849233
Reference: [26] Zhou, J., Lu, J., Lu, J.: Pinning adaptive synchronization of a general complex dynamical network..Automatica 44 (2008), 4, 996-1003. Zbl 1158.93339, MR 2530942, 10.1016/j.automatica.2007.08.016
Reference: [27] He, P., Ma, S. H., Fan, T.: Finite-time mixed outer synchronization of complex networks with coupling time-varying delay..Chaos 22 (2012), 4, 043151. 10.1063/1.4773005
Reference: [28] He, P., Jing, C. G., Fan, T., Chen, C. Z.: Robust decentralized adaptive synchronization of general complex networks with coupling delayed and uncertainties..Complexity 19 (2014), 10-26. MR 3158431, 10.1002/cplx.21472
Reference: [29] He, P., Jing, C. G., Chen, C. Z., Fan, T., Nik, H. Saberi: Synchronization of general complex networks via adaptive control schemes..J. Phys. 82 (2014), 3, 499-514.
.

Files

Files Size Format View
Kybernetika_50-2014-4_8.pdf 717.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo