Previous |  Up |  Next

Article

Title: Shape optimization for Stokes problem with threshold slip (English)
Author: Haslinger, Jaroslav
Author: Stebel, Jan
Author: Sassi, Taoufik
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 59
Issue: 6
Year: 2014
Pages: 631-652
Summary lang: English
.
Category: math
.
Summary: We study the Stokes problems in a bounded planar domain $\Omega $ with a friction type boundary condition that switches between a slip and no-slip stage. Our main goal is to determine under which conditions concerning the smoothness of $\Omega $ solutions to the Stokes system with the slip boundary conditions depend continuously on variations of $\Omega $. Having this result at our disposal, we easily prove the existence of a solution to optimal shape design problems for a large class of cost functionals. In order to release the impermeability condition, whose numerical treatment could be troublesome, we use a penalty approach. We introduce a family of shape optimization problems with the penalized state relations. Finally we establish convergence properties between solutions to the original and modified shape optimization problems when the penalty parameter tends to zero. (English)
Keyword: Stokes problem
Keyword: friction boundary condition
Keyword: shape optimization
MSC: 49Q10
MSC: 76D07
idZBL: Zbl 06391454
idMR: MR3277731
DOI: 10.1007/s10492-014-0077-z
.
Date available: 2014-11-10T09:12:25Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143992
.
Reference: [1] Březina, J.: Asymptotic properties of solutions to the equations of incompressible fluid mechanics.J. Math. Fluid Mech. 12 536-553 (2010). Zbl 1270.35336, MR 2749442, 10.1007/s00021-009-0301-x
Reference: [2] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods.Springer Series in Computational Mathematics 15 Springer, New York (1991). Zbl 0788.73002, MR 1115205
Reference: [3] Bucur, D., Feireisl, E., Nečasová, Š.: Influence of wall roughness on the slip behaviour of viscous fluids.Proc. R. Soc. Edinb., Sect. A, Math. 138 957-973 (2008). Zbl 1151.76004, MR 2477446, 10.1017/S0308210507000376
Reference: [4] Bulíček, M., Gwiazda, P., Málek, J., Świerczewska-Gwiazda, A.: On unsteady flows of implicitly constituted incompressible fluids.SIAM J. Math. Anal. 44 2756-2801 (2012). Zbl 1256.35074, MR 3023393, 10.1137/110830289
Reference: [5] Chenais, D.: On the existence of a solution in a domain identification problem.J. Math. Anal. Appl. 52 189-219 (1975). Zbl 0317.49005, MR 0385666, 10.1016/0022-247X(75)90091-8
Reference: [6] Fujita, H.: A mathematical analysis of motions of viscous incompressible fluid under leak or slip boundary conditions.RIMS Kokyuroku 888 199-216 (1994). Zbl 0939.76527, MR 1338892
Reference: [7] Fujita, H.: A coherent analysis of Stokes flows under boundary conditions of friction type.J. Comput. Appl. Math. 149 57-69 (2002). Zbl 1058.76023, MR 1952966, 10.1016/S0377-0427(02)00520-4
Reference: [8] Galdi, G. P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. 1: Linearized Steady Problems.Springer Tracts in Natural Philosophy 38 Springer, New York (1994). MR 1284206
Reference: [9] Haslinger, J., Mäkinen, R. A. E.: Introduction to Shape Optimization: Theory, Approximation, and Computation.Advances in Design and Control 7. SIAM Society for Industrial and Applied Mathematics Philadelphia (2003). Zbl 1020.74001, MR 1969772
Reference: [10] Haslinger, J., Outrata, J. V., Pathó, R.: Shape optimization in 2{D} contact problems with given friction and a solution-dependent coefficient of friction.Set-Valued Var. Anal. 20 31-59 (2012). Zbl 1242.49088, MR 2886504
Reference: [11] Hlaváček, I., Mäkinen, R.: On the numerical solution of axisymmetric domain optimization problems.Appl. Math., Praha 36 284-304 (1991). Zbl 0745.65044, MR 1113952
Reference: [12] Liakos, A.: Weak imposition of boundary conditions in the Stokes and Navier-Stokes equation.PhD thesis, University of Pittsburgh (1999). MR 2700238
Reference: [13] Málek, J., Rajagopal, K. R.: Mathematical issues concerning the Navier-Stokes equations and some of its generalizations.C. M. Dafermos Evolutionary Equations. Vol. II Handbook of Differential Equations Elsevier/North-Holland, Amsterdam (2005), 371-459. Zbl 1095.35027, MR 2182831
Reference: [14] Navier, C. L.: Mémoire sur les lois du mouvement des fluides.Mem. Acad. R. Sci. Paris 6 389-416 (1823).
Reference: [15] Saito, N.: On the Stokes equation with the leak and slip boundary conditions of friction type: regularity of solutions.Publ. Res. Inst. Math. Sci. 40 345-383 (2004), errata ibid. 48 475-476 (2012). Zbl 1244.35061, MR 2049639, 10.2977/prims/1145475807
Reference: [16] Sokołowski, J., Zolesio, J.-P.: Introduction to Shape Optimization: Shape Sensitivity Analysis.Springer Series in Computational Mathematics 16 Springer, Berlin (1992). Zbl 0761.73003, MR 1215733, 10.1007/978-3-642-58106-9_1
Reference: [17] Stebel, J.: On shape stability of incompressible fluids subject to Navier's slip condition.J. Math. Fluid Mech. 14 575-589 (2012). Zbl 1254.76058, MR 2964751, 10.1007/s00021-011-0086-6
.

Files

Files Size Format View
AplMat_59-2014-6_3.pdf 350.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo