Previous |  Up |  Next

Article

Title: Multiplicity and uniqueness for a class of discrete fractional boundary value problems (English)
Author: Zhanmei, Lv
Author: Yanping, Gong
Author: Yi, Chen
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 59
Issue: 6
Year: 2014
Pages: 673-695
Summary lang: English
.
Category: math
.
Summary: The paper deals with a class of discrete fractional boundary value problems. We construct the corresponding Green's function, analyse it in detail and establish several of its key properties. Then, by using the fixed point index theory, the existence of multiple positive solutions is obtained, and the uniqueness of the solution is proved by a new theorem on an ordered metric space established by M. Jleli, et al. (2012). (English)
Keyword: fractional order
Keyword: discrete fractional boundary value problem
Keyword: fractional difference equation
Keyword: positive solution
MSC: 26A33
MSC: 39A05
MSC: 39A12
idZBL: Zbl 06391456
idMR: MR3277733
DOI: 10.1007/s10492-014-0079-x
.
Date available: 2014-11-10T09:19:19Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143994
.
Reference: [1] Alyousef, K.: Boundary Value Problems for Discrete Fractional Equations.Ph.D. dissertation, The University of Nebraska-Lincoln (2012). MR 3047184
Reference: [2] Anastassiou, G. A.: Nabla discrete fractional calculus and nabla inequalities.Math. Comput. Modelling 51 (2010), 562-571. Zbl 1190.26001, MR 2594707, 10.1016/j.mcm.2009.11.006
Reference: [3] Atici, F. M., Eloe, P. W.: A transform method in discrete fractional calculus.Int. J. Difference Equ. 2 (2007), 165-176. MR 2493595
Reference: [4] Atici, F. M., Eloe, P. W.: Initial value problems in discrete fractional calculus.Proc. Am. Math. Soc. 137 (2009), 981-989. Zbl 1166.39005, MR 2457438, 10.1090/S0002-9939-08-09626-3
Reference: [5] Atici, F. M., Eloe, P. W.: Linear systems of fractional nabla difference equations.Rocky Mt. J. Math. 41 (2011), 353-370. Zbl 1218.39003, MR 2794443, 10.1216/RMJ-2011-41-2-353
Reference: [6] cı, F. M. Atı, Eloe, P. W.: Two-point boundary value problems for finite fractional difference equations.J. Difference Equ. Appl. 17 (2011), 445-456. MR 2783359, 10.1080/10236190903029241
Reference: [7] cı, F. M. Atı, Eloe, P. W.: Gronwall's inequality on discrete fractional calculus.Comput. Math. Appl. 64 (2012), 3193-3200. MR 2989347, 10.1016/j.camwa.2011.11.029
Reference: [8] cı, F. M. Atı, $Ş$engül, S.: Modeling with fractional difference equations.J. Math. Anal. Appl. 369 (2010), 1-9. MR 2643839, 10.1016/j.jmaa.2010.02.009
Reference: [9] Bastos, N. R. O., Ferreira, R. A. C., Torres, D. F. M.: Discrete-time fractional variational problems.Signal Process. 91 (2011), 513-524. Zbl 1203.94022
Reference: [10] Deimling, K.: Nonlinear Functional Analysis.Springer, New York (1985). Zbl 0559.47040, MR 0787404
Reference: [11] Erbe, L. H., Hu, S. C., Wang, H. Y.: Multiple positive solutions of some boundary value problems.J. Math. Anal. Appl. 184 (1994), 640-648. Zbl 0805.34021, MR 1281534, 10.1006/jmaa.1994.1227
Reference: [12] Ferreira, R. A. C.: Positive solutions for a class of boundary value problems with fractional $q$-differences.Comput. Math. Appl. 61 (2011), 367-373. Zbl 1216.39013, MR 2754144, 10.1016/j.camwa.2010.11.012
Reference: [13] Ferreira, R. A. C.: A discrete fractional Gronwall inequality.Proc. Am. Math. Soc. 140 (2012), 1605-1612. Zbl 1243.26012, MR 2869144, 10.1090/S0002-9939-2012-11533-3
Reference: [14] Ferreira, R. A. C., Goodrich, C. S.: Positive solution for a discrete fractional periodic boundary value problem.Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 19 (2012), 545-557. Zbl 1268.26010, MR 3058228
Reference: [15] Goodrich, C. S.: Continuity of solutions to discrete fractional initial value problems.Comput. Math. Appl. 59 (2010), 3489-3499. Zbl 1197.39002, MR 2646320, 10.1016/j.camwa.2010.03.040
Reference: [16] Goodrich, C. S.: Solutions to a discrete right-focal fractional boundary value problem.Int. J. Difference Equ. 5 (2010), 195-216. MR 2771325
Reference: [17] Goodrich, C. S.: Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions.Comput. Math. Appl. 61 (2011), 191-202. Zbl 1211.39002, MR 2754129, 10.1016/j.camwa.2010.10.041
Reference: [18] Goodrich, C. S.: Existence of a positive solution to a system of discrete fractional boundary value problems.Appl. Math. Comput. 217 (2011), 4740-4753. Zbl 1215.39003, MR 2745153, 10.1016/j.amc.2010.11.029
Reference: [19] Goodrich, C. S.: Existence of a positive solution to systems of differential equations of fractional order.Comput. Math. Appl. 62 (2011), 1251-1268. Zbl 1253.34012, MR 2824712, 10.1016/j.camwa.2011.02.039
Reference: [20] Goodrich, C. S.: On positive solutions to nonlocal fractional and integer-order difference equations.Appl. Anal. Discrete Math. 5 (2011), 122-132. Zbl 1289.39008, MR 2809040, 10.2298/AADM110111001G
Reference: [21] Goodrich, C. S.: On a discrete fractional three-point boundary value problem.J. Difference Equ. Appl. 18 (2012), 397-415. Zbl 1253.26010, MR 2901829, 10.1080/10236198.2010.503240
Reference: [22] Goodrich, C. S.: On a first-order semipositone discrete fractional boundary value problem.Arch. Math. 99 (2012), 509-518. Zbl 1263.26016, MR 3001554, 10.1007/s00013-012-0463-2
Reference: [23] Goodrich, C. S.: On a fractional boundary value problem with fractional boundary conditions.Appl. Math. Lett. 25 (2012), 1101-1105. Zbl 1266.39006, MR 2922519, 10.1016/j.aml.2011.11.028
Reference: [24] Goodrich, C. S.: On discrete sequential fractional boundary value problems.J. Math. Anal. Appl. 385 (2012), 111-124. Zbl 1236.39008, MR 2832079, 10.1016/j.jmaa.2011.06.022
Reference: [25] Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones.Notes and reports in mathematics in science and engineering 5 Academic Press, Boston (1988). Zbl 0661.47045, MR 0959889
Reference: [26] Holm, M.: The Theory of Discrete Fractional Calculus: Development and Application.Ph.D. dissertation, The University of Nebraska-Lincoln (2011). MR 2873503
Reference: [27] Jarad, F., Abdeljawad, T., Baleanu, D., Biçen, K.: On the stability of some discrete fractional nonautonomous systems.Abstr. Appl. Anal. 2012 (2012), Article ID 476581, 9 pages, doi:10.1155/2012/476581. Zbl 1235.93206, MR 2889092, 10.1155/2012/476581
Reference: [28] Jleli, M., Rajić, V. Č., Samet, B., Vetro, C.: Fixed point theorems on ordered metric spaces and applications to nonlinear elastic beam equations.J. Fixed Point Theory Appl. 12 (2012), 175-192. Zbl 1266.54089, MR 3034859, 10.1007/s11784-012-0081-4
Reference: [29] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations.North-Holland Mathematics Studies 204 Elsevier, Amsterdam (2006). Zbl 1092.45003, MR 2218073
Reference: [30] Lakshmikantham, V., Leela, S., Devi, J. Vasundhara: Theory of Fractional Dynamic Systems.Cambridge Academic Publishers, Cambridge (2009).
Reference: [31] Lv, W. D.: Existence of solutions for discrete fractional boundary value problems with a $p$-Laplacian operator.Adv. Difference Equ. 2012 (2012), 10 pages, doi:10.1186/\allowbreak1687-1847-2012-163. MR 3016060, 10.1186/\allowbreak1687-1847-2012-163
Reference: [32] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations.John Wiley & Sons New York (1993). Zbl 0789.26002, MR 1219954
Reference: [33] Pan, Y. Y., Han, Z. L., Sun, S., Zhao, Y.: The existence of solutions to a system of discrete fractional boundary value problems.Abstr. Appl. Anal. 2012 (2012), Article ID 707631, 15 pages, doi:10.1155/2012/707631. Zbl 1244.39006, MR 2898035, 10.1155/2012/707631
.

Files

Files Size Format View
AplMat_59-2014-6_5.pdf 304.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo