Previous |  Up |  Next

Article

Title: Determination of the unknown source term in a linear parabolic problem from the measured data at the final time (English)
Author: Kaya, Müjdat
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 59
Issue: 6
Year: 2014
Pages: 715-728
Summary lang: English
.
Category: math
.
Summary: The problem of determining the source term $F(x,t)$ in the linear parabolic equation $u_t=(k(x)u_x(x,t))_x + F(x,t)$ from the measured data at the final time $u(x,T)=\mu (x)$ is formulated. It is proved that the Fréchet derivative of the cost functional $J(F) = \|\mu _T(x)- u(x,T)\|_{0}^2$ can be formulated via the solution of the adjoint parabolic problem. Lipschitz continuity of the gradient is proved. An existence result for a quasi solution of the considered inverse problem is proved. A monotone iteration scheme is obtained based on the gradient method. Convergence rate is proved. (English)
Keyword: inverse parabolic problem
Keyword: unknown source
Keyword: adjoint problem
Keyword: Fréchet derivative
Keyword: Lipschitz continuity
MSC: 35K10
MSC: 35R30
idZBL: Zbl 06391458
idMR: MR3277735
DOI: 10.1007/s10492-014-0081-3
.
Date available: 2014-11-10T09:24:44Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143996
.
Reference: [1] Bushuyev, I.: Global uniqueness for inverse parabolic problems with final observation.Inverse Probl. 11 L11--L16 (1995). Zbl 0840.35120, MR 1345998
Reference: [2] Chen, Q., Liu, J.: Solving an inverse parabolic problem by optimization from final measurement data.J. Comput. Appl. Math. 193 183-203 (2006). Zbl 1091.35113, MR 2228714, 10.1016/j.cam.2005.06.003
Reference: [3] Duchateau, P.: An introduction to inverse problems in partial differential equations for physicists, scientists and engineers. A tutorial.Parameter Identification and Inverse Problems in Hydrology, Geology and Ecology ({K}arlsruhe, 1995) Water Sci. Technol. Libr. 23 Kluwer Acad. Publ., Dordrecht (1996). MR 1434090
Reference: [4] Hasanov, A.: Simultaneous determination of source terms in a linear parabolic problem from the final overdetermination: weak solution approach.J. Math. Anal. Appl. 330 766-779 (2007). Zbl 1120.35083, MR 2308406, 10.1016/j.jmaa.2006.08.018
Reference: [5] Hasanov, A.: Simultaneous determination of the source terms in a linear hyperbolic problem from the final overdetermination: Weak solution approach.IMA J. Appl. Math. 74 1-19 (2009). Zbl 1162.35404, MR 2471318, 10.1093/imamat/hxn042
Reference: [6] Hasanov, A., Duchateau, P., Pektaş, B.: An adjoint problem approach and coarse-fine mesh method for identification of the diffusion coefficient in a linear parabolic equation.J. Inverse Ill-Posed Probl. 14 435-463 (2006). Zbl 1135.35095, MR 2258244, 10.1515/156939406778247615
Reference: [7] Isakov, V.: Inverse parabolic problems with the final overdetermination.Commun. Pure Appl. Math. 44 185-209 (1991). Zbl 0729.35146, MR 1085828, 10.1002/cpa.3160440203
Reference: [8] Kabanikhin, S. I.: Conditional stability stopping rule for gradient methods applied to inverse and ill-posed problems.J. Inverse Ill-Posed Probl. 14 805-812 (2006). Zbl 1115.65061, MR 2270701, 10.1515/156939406779768337
Reference: [9] Kamynin, V. L.: On the unique solvability of an inverse problem for parabolic equations under a final overdetermination condition.Math. Notes 73 (2003), 202-211. Transl. from the Russian. Mat. Zametki {\it 73} (2003), 217-227. Zbl 1033.35138, MR 1997661, 10.1023/A:1022107024916
Reference: [10] Ladyzhenskaya, O. A.: The Boundary Value Problems of Mathematical Physics. Transl. from the Russian.Applied Mathematical Sciences 49 Springer, New York (1985). Zbl 0588.35003, MR 0793735, 10.1007/978-1-4757-4317-3
Reference: [11] Prilepko, A. I., Orlovsky, D. G., Vasin, I. A.: Methods for Solving Inverse Problems in Mathematical Physics.Pure and Applied Mathematics 231 Marcel Dekker, New York (2000). Zbl 0947.35173, MR 1748236
Reference: [12] Prilepko, A. I., Tkachenko, D. S.: An inverse problem for a parabolic equation with final overdetermination.V. G. Romanov Ill-posed and Inverse Problems VSP, Utrecht 345-381 (2002). Zbl 1059.35173, MR 2024593
Reference: [13] Zeidler, E.: Nonlinear Functional Analysis and Its Applications. I: Fixed-Point Theorems. Transl. from the German.Springer, New York (1986). Zbl 0583.47050, MR 0816732
.

Files

Files Size Format View
AplMat_59-2014-6_7.pdf 261.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo