Previous |  Up |  Next

Article

Title: Idempotent completion of pretriangulated categories (English)
Author: Liu, Jichun
Author: Sun, Longgang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 2
Year: 2014
Pages: 477-494
Summary lang: English
.
Category: math
.
Summary: A pretriangulated category is an additive category with left and right triangulations such that these two triangulations are compatible. In this paper, we first show that the idempotent completion of a left triangulated category admits a unique structure of left triangulated category and dually this is true for a right triangulated category. We then prove that the idempotent completion of a pretriangulated category has a natural structure of pretriangulated category. As an application, we show that a torsion pair in a pretriangulated category extends uniquely to a torsion pair in the idempotent completion. (English)
Keyword: idempotent completion
Keyword: pretriangulated category
Keyword: torsion pair
MSC: 16B50
MSC: 18E05
MSC: 18E30
MSC: 18E40
idZBL: Zbl 06391507
idMR: MR3277749
DOI: 10.1007/s10587-014-0114-9
.
Date available: 2014-11-10T09:51:22Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144011
.
Reference: [1] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules.(2nd ed.) Graduate Texts in Mathematicis 13 Springer, New York (1992). Zbl 0765.16001, MR 1245487
Reference: [2] Assem, I., Beligiannis, A., Marmaridis, N.: Right triangulated categories with right semiequivalences.Algebras and Modules II I. Reiten et al. CMS Conf. Proc. 24 AMS, Providence 17-37 (1998). MR 1648611
Reference: [3] Auslander, M.: Comments on the functor Ext.Topology 8 (1969), 151-166. Zbl 0204.36401, MR 0237606, 10.1016/0040-9383(69)90006-8
Reference: [4] Balmer, P., Schlichting, M.: Idempotent completion of triangulated categories.J. Algebra 236 (2001), 819-834. Zbl 0977.18009, MR 1813503, 10.1006/jabr.2000.8529
Reference: [5] Beligiannis, A.: Homotopy theory of modules and Gorenstein rings.Math. Scand. 89 (2001), 5-45. Zbl 1023.55009, MR 1856980, 10.7146/math.scand.a-14329
Reference: [6] Beligiannis, A., Marmaridis, N.: Left triangulated categories arising from contravariantly finite subcategories.Commun. Algebra 22 (1994), 5021-5036. Zbl 0811.18005, MR 1285724, 10.1080/00927879408825119
Reference: [7] Beligiannis, A., Reiten, I.: Homological and homotopical aspects of torsion theories.Mem. Am. Math. Soc. 188 (2007). Zbl 1124.18005, MR 2327478
Reference: [8] Bühler, T.: Exact categories.Expo. Math. 28 (2010), 1-69. Zbl 1192.18007, MR 2606234, 10.1016/j.exmath.2009.04.004
Reference: [9] Dickson, S. E.: A torsion theory for Abelian categories.Trans. Am. Math. Soc. 121 (1966), 223-235. Zbl 0138.01801, MR 0191935, 10.1090/S0002-9947-1966-0191935-0
Reference: [10] Hartshorne, R.: Coherent functors.Adv. Math. 140 (1998), 44-94. Zbl 0921.13010, MR 1656482, 10.1006/aima.1998.1762
Reference: [11] Karoubi, M.: Algèbres de Clifford et K-théorie.French Ann. Sci. Éc. Norm. Supér. (4) 1 (1968), 161-270. Zbl 0194.24101, MR 0238927, 10.24033/asens.1163
Reference: [12] Kashiwara, M., Schapira, P.: Categories and Sheaves.Grundlehren der Mathematischen Wissenschaften 332 Springer, Berlin (2006). Zbl 1118.18001, MR 2182076
Reference: [13] Koenig, S., Zhu, B.: From triangulated categories to abelian categories: cluster tilting in a general framework.Math. Z. 258 (2008), 143-160. Zbl 1133.18005, MR 2350040, 10.1007/s00209-007-0165-9
Reference: [14] Miličić, D.: Lecture on Derived Categories. www.math.utah.edu/ {milicic/Eprints/dercat.pdf}..
Reference: [15] Verdier, J.-L.: Des catégories dérivées des catégories abéliennes.French Astérisque 239 Société Mathématique de France, Paris (1996). Zbl 0882.18010, MR 1453167
.

Files

Files Size Format View
CzechMathJ_64-2014-2_14.pdf 309.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo