Previous |  Up |  Next

Article

Title: Parameter estimation of sub-Gaussian stable distributions (English)
Author: Omelchenko, Vadym
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 50
Issue: 6
Year: 2014
Pages: 929-949
Summary lang: English
.
Category: math
.
Summary: In this paper, we present a parameter estimation method for sub-Gaussian stable distributions. Our algorithm has two phases: in the first phase, we calculate the average values of harmonic functions of observations and in the second phase, we conduct the main procedure of asymptotic maximum likelihood where those average values are used as inputs. This implies that the main procedure of our method does not depend on the sample size of observations. The main idea of our method lies in representing the partial derivative of the density function with respect to the parameter that we estimate as the sum of harmonic functions and using this representation for finding this parameter. For fifteen summands we get acceptable precision. We demonstrate this methodology on estimating the tail index and the dispersion matrix of sub-Gaussian distributions. (English)
Keyword: stable distribution
Keyword: sub-Gaussian distribution
Keyword: maximum likelihood
Keyword: characteristic function
MSC: 62A10
MSC: 62E10
MSC: 62F10
MSC: 93E10
MSC: 93E12
idZBL: Zbl 1307.93406
idMR: MR3301780
DOI: 10.14736/kyb-2014-6-0929
.
Date available: 2015-01-13T09:55:02Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144117
.
Reference: [1] Carrasco, M., Florens, J.: Generalization of GMM to a continuum moment condition..Econom. Theory 16 (2000), 767-834. MR 1803711, 10.1017/S0266466600166010
Reference: [2] Chambers, J. M., Mallows, C L., Stuck, B. W.: A method for simulating stable random variables..J. Amer. Statist. Assoc. 71 1976), 340-344. Zbl 0341.65003, MR 0415982, 10.1080/01621459.1976.10480344
Reference: [3] Cheng, B. N., Rachev, S.: Multivariate stable securities in financial markets..Math. Finance 5 (1995), 133-153.
Reference: [4] DuMouchel, W. H.: Stable Distributions in Statistical Inference..PhD. Thesis, University of Ann Arbor, Ann Arbor 1971. Zbl 0321.62017, MR 2620950
Reference: [5] Fama, E.: Portfolio analysis in a stable Paretian market..Management Sci. 11 (1965), 404-419. Zbl 0129.11903, 10.1287/mnsc.11.3.404
Reference: [6] Hill, B. M.: A simple general approach to inference about the tail of a stable distribution..Ann. Stat. 3 (1975), 5, 1163-1174. MR 0378204, 10.1214/aos/1176343247
Reference: [7] Horn, R. A., Johnson, C. R.: Matrix Analysis..Cambridge University Press 1985. Zbl 0801.15001, MR 0832183
Reference: [8] Kagan, A.: Fisher information contained in a finite-dimensional linear space, and a properly formulated version of the method of moments (in Russian)..Problemy Peredachi Informatsii 12 (2009), 15-29. MR 0413340
Reference: [9] Klebanov, L.: Heavy Tailed Distributions..Matfyzpress, Prague 2003.
Reference: [10] Koutrovelis, I. A.: Regression-type estimation of the parameters of stable laws..J. Amer. Statist. Assoc. 75 (1980), 918-928. MR 0600977, 10.1080/01621459.1980.10477573
Reference: [11] Kring, S., Rachev, S., Höchstötter, M., Fabozzi, F. J.: Estimation of Alpha-Stable Sub-Gaussian Distributions for Asset Returns..In: Risk Assessment: Decisions in Banking and Finance. Physica-Verlag, Heidelberg 2008, pp. 111-152. Zbl 1154.91601
Reference: [12] Madan, D. B., Seneta, E.: The variance gamma model from shared market returns..J. Bus. 63 (1990), 511-524. 10.1086/296519
Reference: [13] Mandelbrot, B.: The variation of certain speculative prices..J. Bus. 26 (1963), 394-419. 10.1086/294632
Reference: [14] McCulloch, J. H.: Simple consistent estimators of stable distribution parameters..Commun. Statist. - Simula 15 (1986), 1109-1136. Zbl 0612.62028, MR 0876783, 10.1080/03610918608812563
Reference: [15] McCulloch, J. H.: Estimation of the bivariate stable spectral representation by the projection method..Comput. Econom. 16 (2000), 47-62. Zbl 0964.62108, 10.1023/A:1008797318867
Reference: [16] Mittnik, S., Rachev, S.: Tail estmation of the stable index alpha..Applied mathematics. Letters 9 (1996), 3, 53-56. MR 1385999
Reference: [17] Mittnik, S., Paolella, M. S.: Prediction of Financial Downside-Risk with Heavy-Tailed Conditional Distributions.
Reference: [18] Nolan, J. P.: Modeling Financial Data with Stable Distributions..In: Handbook of Heavy Tailed Distributions in Finance, Handbooks in Finance: Book 1 (2003), pp. 105-130.
Reference: [19] Nolan, J. P.: Maximum likelihood estimation and diagnostics for stable distributions..In: Lévy Processes (O. E. Barndorff-Nielsen, T. Mikosch, and S. Resnick, eds.), Brikhauser, Boston 2001. Zbl 0971.62008, MR 1833706
Reference: [20] Nolan, J. P., Panorska, A. K.: Data analysis for heavy tailed multivariate samples..Commun. Statist.: Stochastic Models (1997), 687-702. Zbl 0899.60011, MR 1482289
Reference: [21] Omelchenko, V.: Elliptical stable distributions..In: Mathematical Methods in Economics 2010 (M. Houda and J. Friebelova, eds.), pp. 483-488.
Reference: [22] Ortobelli, S., Huber, I., Rachev, S., Schwarz, E. S.: Portfolio Choice Theory with Non-Gaussian Distributed Return..In: Handbook of Heavy Tailed Distributions in Finance, Handbooks in Finance: Book 1 (2003), pp. 547-594.
Reference: [23] Pivato, M., Seco, L.: Estimating the spectral measure of a multivariate stable distribution via spherical harmonic analysis..J. Multivariate Anal. 87 (2003), 2, 219-240. Zbl 1041.60019, MR 2016936, 10.1016/S0047-259X(03)00052-6
Reference: [24] Rachev, S. T., Schwarz, E. S., Khindanova, I.: Stable Modeling of Market and Credit Value at Risk..In: Handbook of Heavy Tailed Distributions in Finance, Handbooks in Finance: Book 1 (2003), pp. 255-264.
Reference: [25] Samorodnitsky, G., Taqqu, M. S.: Stable Non-Gaussian Random Processes..Chapman and Hall 1994. Zbl 0925.60027, MR 1280932
Reference: [26] Schmidt, P.: An improved version of Quandt-Ramsey MGF estimator for mixtures of normal distributions and switching regressions..Econometrica 50 (1982), 501-524. MR 0662290, 10.2307/1912640
Reference: [27] Slámová, L., Klebanov, L.: Modeling financial returns by discrete stable distributions..In: Proc. 30th International Conference Mathematical Methods in Economics 2012.
Reference: [28] Tran, K. C.: Estimating mixtures of normal distribution via empirical characteristic function..Econom. Rev. 17 (1998), 167-83. MR 1624519, 10.1080/07474939808800410
Reference: [29] Zolotarev, V.: On representation of stable laws by integrals selected translation..Math. Statist. Probab. 6 (1986), 84-88.
.

Files

Files Size Format View
Kybernetika_50-2014-6_6.pdf 338.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo