Previous |  Up |  Next

Article

Title: Verification of functional a posteriori error estimates for obstacle problem in 2D (English)
Author: Harasim, Petr
Author: Valdman, Jan
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 50
Issue: 6
Year: 2014
Pages: 978-1002
Summary lang: English
.
Category: math
.
Summary: We verify functional a posteriori error estimates proposed by S. Repin for a class of obstacle problems in two space dimensions. New benchmarks with known analytical solution are constructed based on one dimensional benchmark introduced by P. Harasim and J. Valdman. Numerical approximation of the solution of the obstacle problem is obtained by the finite element method using bilinear elements on a rectangular mesh. Error of the approximation is measured by a functional majorant. The majorant value contains three unknown fields: a gradient field discretized by Raviart-Thomas elements, Lagrange multipliers field discretized by piecewise constant functions and a scalar parameter $\beta$. The minimization of the majorant value is realized by an alternate minimization algorithm, whose convergence is discussed. Numerical results validate two estimates, the energy estimate bounding the error of approximation in the energy norm by the difference of energies of discrete and exact solutions and the majorant estimate bounding the difference of energies of discrete and exact solutions by the value of the functional majorant. (English)
Keyword: obstacle problem
Keyword: a posteriori error estimate
Keyword: functional majorant
Keyword: finite element method
Keyword: variational inequalities
Keyword: Raviart–Thomas elements
MSC: 34B15
MSC: 65K15
MSC: 65L60
MSC: 74K05
MSC: 74M15
MSC: 74S05
idZBL: Zbl 06416870
idMR: MR3301782
DOI: 10.14736/kyb-2014-6-0978
.
Date available: 2015-01-13T10:00:44Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144119
.
Reference: [1] Ainsworth, M., Oden, J. T.: A Posteriori Error Estimation in Finite Element Analysis..Wiley and Sons, New York 2000. Zbl 1008.65076, MR 1885308
Reference: [2] Babuška, I., Strouboulis, T.: The finite Element Method and its Reliability..Oxford University Press, New York 2001. MR 1857191
Reference: [3] Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations..Birkhäuser, Berlin 2003. Zbl 1020.65058, MR 1960405
Reference: [4] Braess, D., Hoppe, R. H. W., Schöberl, J.: A posteriori estimators for obstacle problems by the hypercircle method..Comput. Vis. Sci. 11 (2008), 351-362. MR 2425501, 10.1007/s00791-008-0104-2
Reference: [5] Brezi, F., Hager, W. W., Raviart, P. A.: Error estimates for the finite element solution of variational inequalities I..Numer. Math. 28 (1977), 431-443. MR 0448949, 10.1007/BF01404345
Reference: [6] Buss, H., Repin, S.: A posteriori error estimates for boundary value problems with obstacles..In: Proc. 3nd European Conference on Numerical Mathematics and Advanced Applications, Jÿvaskylä 1999, World Scientific 2000, pp. 162-170. Zbl 0968.65041, MR 1936177
Reference: [7] Carstensen, C., Merdon, C.: A posteriori error estimator competition for conforming obstacle problems..Numer. Methods Partial Differential Equations 29 (2013), 667-692. MR 3022903, 10.1002/num.21728
Reference: [8] Dostál, Z.: Optimal Quadratic Programming Algorithms..Springer 2009. MR 2492434
Reference: [9] Falk, R. S.: Error estimates for the approximation of a class of variational inequalities..Math. Comput. 28 (1974), 963-971. Zbl 0297.65061, MR 0391502, 10.1090/S0025-5718-1974-0391502-8
Reference: [10] Fuchs, M., Repin, S.: A posteriori error estimates for the approximations of the stresses in the Hencky plasticity problem..Numer. Funct. Anal. Optim. 32 (2011), 610-640. MR 2795532, 10.1080/01630563.2011.571802
Reference: [11] Glowinski, R., Lions, J. L., Trémolieres, R.: Numerical Analysis of Variational Inequalities..North-Holland 1981. Zbl 0463.65046, MR 0635927
Reference: [12] Gustafsson, B.: A simple proof of the regularity theorem for the variational inequality of the obstacle problem..Nonlinear Anal. 10 (1986), 12, 1487-1490. Zbl 0612.49005, MR 0869557, 10.1016/0362-546X(86)90119-7
Reference: [13] Valdman, P. Harasim AD J.: Verification of functional a posteriori error estimates for obstacle problem in 1D..Kybernetika 49 (2013), 5, 738-754. MR 3182637
Reference: [14] Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J.: Solution of variational inequalities in mechanics..Applied Mathematical Sciences 66, Springer-Verlag, New York 1988. Zbl 0654.73019, MR 0952855
Reference: [15] Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications..Academic Press, New York 1980. Zbl 0988.49003, MR 0567696
Reference: [16] Lions, J. L., Stampacchia, G.: Variational inequalities..Comm. Pure Appl. Math. 20 (1967), 493-519. Zbl 0152.34601, MR 0216344, 10.1002/cpa.3160200302
Reference: [17] Neittaanmäki, P., Repin, S.: Reliable Methods for Computer Simulation (Error Control and A Posteriori Estimates)..Elsevier, 2004. Zbl 1076.65093, MR 2095603
Reference: [18] Nochetto, R. H., Seibert, K. G., Veeser, A.: Pointwise a posteriori error control for elliptic obstacle problems..Numer. Math. 95 (2003), 631-658. MR 1993943, 10.1007/s00211-002-0411-3
Reference: [19] Rahman, T., Valdman, J.: Fast MATLAB assembly of FEM matrices in 2D and 3D: nodal elements..Appl. Math. Comput. 219 (2013), 7151-7158. Zbl 1288.65169, MR 3030557, 10.1016/j.amc.2011.08.043
Reference: [20] Repin, S.: A posteriori error estimation for variational problems with uniformly convex functionals..Math. Comput. 69 (230) (2000), 481-500. Zbl 0949.65070, MR 1681096, 10.1090/S0025-5718-99-01190-4
Reference: [21] Repin, S.: A posteriori error estimation for nonlinear variational problems by duality theory..Zapiski Nauchn. Semin. POMI 243 (1997), 201-214. Zbl 0904.65064, MR 1629741
Reference: [22] Repin, S.: Estimates of deviations from exact solutions of elliptic variational inequalities..Zapiski Nauchn. Semin, POMI 271 (2000), 188-203. Zbl 1118.35320, MR 1810617
Reference: [23] Repin, S.: A Posteriori Estimates for Partial Differential Equations..Walter de Gruyter, Berlin 2008. Zbl 1162.65001, MR 2458008
Reference: [24] Repin, S., Valdman, J.: Functional a posteriori error estimates for problems with nonlinear boundary conditions..J. Numer. Math. 16 (2008), 1, 51-81. Zbl 1146.65054, MR 2396672, 10.1515/JNUM.2008.003
Reference: [25] Repin, S., Valdman, J.: Functional a posteriori error estimates for incremental models in elasto-plasticity..Centr. Eur. J. Math. 7 (2009), 3, 506-519. Zbl 1269.74202, MR 2534470, 10.2478/s11533-009-0035-2
Reference: [26] Ulbrich, M.: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces..SIAM, 2011. Zbl 1235.49001, MR 2839219
Reference: [27] Valdman, J.: Minimization of functional majorant in a posteriori error analysis based on $H(div)$ multigrid-preconditioned CG method..Adv. Numer. Anal. (2009). Zbl 1200.65095, MR 2739760, 10.1155/2009/164519
Reference: [28] Zou, Q., Veeser, A., Kornhuber, R., Gräser, C.: Hierarchical error estimates for the energy functional in obstacle problems..Numer. Math. 117 (2012), 4, 653-677. Zbl 1218.65067, MR 2776914, 10.1007/s00211-011-0364-5
.

Files

Files Size Format View
Kybernetika_50-2014-6_8.pdf 2.158Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo