Previous |  Up |  Next

Article

Title: Bounds for Convex Functions of Čebyšev Functional Via Sonin's Identity with Applications (English)
Author: Dragomir, Silvestru Sever
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 22
Issue: 2
Year: 2014
Pages: 107-132
Summary lang: English
.
Category: math
.
Summary: Some new bounds for the Čebyšev functional in terms of the Lebesgue norms $$ \biggl \Vert f-\frac {1}{b-a}\int _a^b f(t){\,\mathrm{d}t} \biggr \Vert _{[a,b],p} $$ and the $\Delta $-seminorms $$ \lVert f\rVert _{p}^{\Delta } := \biggl (\int _a^b \int _a^b |f(t)-f(s)|^{p}{\,\mathrm{d}t} {\,\mathrm{d}s} \biggr )^{\frac 1p} $$ are established. Applications for mid-point and trapezoid inequalities are provided as well. (English)
Keyword: Absolutely continuous functions
Keyword: Convex functions
Keyword: Integral inequalities
Keyword: Čebyšev functional
Keyword: Jensen's inequality
Keyword: Lebesgue norms
Keyword: Mid-point inequalities
Keyword: Trapezoid inequalities
MSC: 25D10
MSC: 26D15
idZBL: Zbl 1308.26030
idMR: MR3303133
.
Date available: 2015-01-27T09:36:16Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/144124
.
Reference: [1] Cerone, P., Dragomir, S.S.: Some bounds in terms of $\Delta $-seminorms for Ostrowski-Grüss type inequalities.Soochow J. Math., 27, 4, 2001, 423-434, Zbl 0996.26018, MR 1867810
Reference: [2] Cerone, P., Dragomir, S.S.: New bounds for the Čebyšev functional.App. Math. Lett., 18, 2005, 603-611, Zbl 1076.26017, MR 2131269, 10.1016/j.aml.2003.09.013
Reference: [3] Cerone, P., Dragomir, S.S.: A refinement of the Grüss inequality and applications.Tamkang J. Math., 38, 1, 2007, 37-49, Preprint RGMIA Res. Rep. Coll. 5 (2) (2002), Art. 14. [online http://rgmia.vu.edu.au/v8n2.html]. Zbl 1143.26009, MR 2321030
Reference: [4] Cerone, P., Dragomir, S.S., Roumeliotis, J.: Grüss inequality in terms of $\Delta $-seminorms and applications.Integral Transforms Spec. Funct., 14, 3, 2003, 205-216, Zbl 1036.26018, MR 1982817, 10.1080/1065246031000074353
Reference: [5] Chebyshev, P.L.: Sur les expressions approximatives des intègrals dèfinis par les outres prises entre les même limites.Proc. Math. Soc. Charkov, 2, 1882, 93-98,
Reference: [6] Cheng, X.-L., Sun, J.: Note on the perturbed trapezoid inequality.J. Ineq. Pure & Appl. Math., 3, 2, 2002, Art. 29. [online http://jipam.vu.edu.au/article.php?sid=181]. Zbl 0994.26020, MR 1906398
Reference: [7] Grüss, G.: Über das Maximum des absoluten Betrages von $\frac{1}{b-a}\int_{a}^{b}f(x)g(x)\,{\rm d}x-\frac{1}{(b-a)^{2}}\int_{a}^{b}f(x)\,{\rm d}x\int_{a}^{b}g(x)\,{\rm d}x$.Math. Z., 39, 1935, 215-226, MR 1545499
Reference: [8] Li, X., Mohapatra, R.N., Rodriguez, R.S.: Grüss-type inequalities.J. Math. Anal. Appl., 267, 2, 2002, 434-443, Zbl 1007.26016, MR 1888014, 10.1006/jmaa.2001.7565
Reference: [9] Lupaş, A.: The best constant in an integral inequality.Mathematica (Cluj, Romania), 15 (38), 2, 1973, 219-222, Zbl 0285.26014, MR 0360960
Reference: [10] Mercer, A.McD.: An improvement of the Grüss inequality.J. Inequal. Pure Appl. Math., 6, 4, 2005, Article 93, 4 pp. (electronic).. Zbl 1084.26014, MR 2178274
Reference: [11] Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Classical and New Inequalities in Analysis.1993, Kluwer Academic Publishers, Dordrecht/Boston/London, MR 1220224
Reference: [12] Ostrowski, A.M.: On an integral inequality.Aequat. Math., 4, 1970, 358-373, Zbl 0198.08106, MR 0268339, 10.1007/BF01844168
Reference: [13] Pachpatte, B.G.: On Grüss like integral inequalities via Pompeiu's mean value theorem.J. Inequal. Pure Appl. Math., 6, 3, 2005, Article 82, 5 pp.. Zbl 1088.26017, MR 2164323
.

Files

Files Size Format View
ActaOstrav_22-2014-2_1.pdf 480.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo