Previous |  Up |  Next

Article

Title: Symmetries and currents in nonholonomic mechanics (English)
Author: Čech, Michal
Author: Musilová, Jana
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 22
Issue: 2
Year: 2014
Pages: 159-184
Summary lang: English
.
Category: math
.
Summary: In this paper we derive general equations for constraint Noethertype symmetries of a first order non-holonomic mechanical system and the corresponding currents, i.e. functions constant along trajectories of the nonholonomic system. The approach is based on a consistent and effective geometrical theory of nonholonomic constrained systems on fibred manifolds and their jet prolongations, first presented and developed by Olga Rossi. As a representative example of application of the geometrical theory and the equations of symmetries and conservation laws derived within this framework we present the Chaplygin sleigh. It is a mechanical system subject to one linear nonholonomic constraint enforcing the plane motion. We describe the trajectories of the Chaplygin sleigh and show that the usual kinetic energy conservation law holds along them, the time translation generator being the corresponding constraint symmetry and simultaneously the symmetry of nonholonomic equations of motion. Moreover, the expressions for two other currents are obtained. Remarkably, the corresponding constraint symmetries are not symmetries of nonholonomic equations of motion. The physical interpretation of results is emphasized. (English)
Keyword: nonholonomic mechanical systems
Keyword: nonholonomic constraint submanifold
Keyword: canonical distribution
Keyword: reduced equations of motion
Keyword: symmetries of nonholonomic systems
Keyword: conservation laws
Keyword: Chaplygin sleigh
MSC: 49S05
MSC: 58E30
idZBL: Zbl 1308.49045
idMR: MR3303137
.
Date available: 2015-01-27T09:41:54Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/144129
.
Reference: [1] Bahar, L.Y.: A unified approach to non-holonomic dynamics.Int. J. Non-Linear Mech., 35, 2000, 613-625, MR 1761376, 10.1016/S0020-7462(99)00045-1
Reference: [2] Bloch, A.M., Baillieul, (with the collaboration of J., Marsden), P.E. Crouch and J.E.: Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics 24.2003, Springer Science + Business Media, LLC, MR 1978379
Reference: [3] Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems, Texts in Applied Mathematics 49.2005, Springer Science + Business Media, Inc., New York, MR 2099139, 10.1007/978-1-4899-7276-7_4
Reference: [4] Cantrijn, F.: Vector fields generating invariants for classical dissipative systems.J. Math. Phys., 23, 1982, 1589-1595, Zbl 0496.70032, MR 0668100, 10.1063/1.525569
Reference: [5] Čech, M., Musilová, J.: Symmetries and conservation laws for Chaplygin sleigh.Balkan J. Geom. Appl. Submitted..
Reference: [6] Chetaev, N.G.: On the Gauss principle.Izv. Kazan Fiz.-Mat. Obsc., 6, 1932–1933, 323-326, (in Russian).
Reference: [7] Monforte, J. Cortés: Geometric, Control and Numerical Aspects of Nonholonomic Systems, Lecture Notes in Mathematics 1793.2002, Springer, Berlin, MR 1942617, 10.1007/b84020
Reference: [8] Czudková, L., Musilová, J.: A practical application of the geometrical theory on fibred manifolds to a planimeter motion.Int. J. Non-Linear Mech., 50, 2012, 19-24.
Reference: [9] León, M. de, Marrero, J.C., Diego, D. Martín de: Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics.J. Geom. Mech., 2, 2010, 159-198, (See also arXiv: 0801.4358v3 [mat-ph] 13 Nov 2009.). MR 2660714, 10.3934/jgm.2010.2.159
Reference: [10] Janová, J., Musilová, J.: Non-holonomic mechanics: A geometrical treatment of general coupled rolling motion.Int. J. Non-Linear Mech., 44, 2009, 98-105, Zbl 1203.70036, 10.1016/j.ijnonlinmec.2008.09.002
Reference: [11] Janová, J., Musilová, J.: The streetboard rider: an appealing problem in non-holonomic mechanics.Eur. J. Phys., 31, 2010, 333-345, 10.1088/0143-0807/31/2/011
Reference: [12] Janová, J., Musilová, J.: Coupled rolling motion: considering rolling friction in non-holonomic mechanics.Eur. J. Phys., 32, 2011, 257-269, 10.1088/0143-0807/32/1/023
Reference: [13] Janová, J., Musilová, J., Bartoš, J.: Coupled rolling motion: a student project in non-holonomic mechanics.Eur. J. Phys., 30, 2010, 1257-1269, 10.1088/0143-0807/30/6/005
Reference: [14] Krupková, O.: Mechanical systems with nonholonomic constraints.J. Math. Phys., 38, 1997, 5098-5126, MR 1471916, 10.1063/1.532196
Reference: [15] Krupková, O.: Higher order mechanical systems with nonholonomic constraints.J. Math. Phys., 41, 2000, 5304-5324, MR 1770957, 10.1063/1.533411
Reference: [16] Krupková, O.: Recent results in the geometry of constrained systems.Rep. Math. Phys., 49, 2002, 269-278, Zbl 1018.37041, MR 1915806, 10.1016/S0034-4877(02)80025-8
Reference: [17] Krupková, O.: Variational metric structures.Publ. Math. Debrecen, 62, 3–4, 2003, 461-495, Zbl 1026.53041, MR 2008109
Reference: [18] Krupková, O.: Noether Theorem, 90 years on.XVII. International Fall Workshop, 2009, 159-170, American Institute of Physics,
Reference: [19] Krupková, O.: The nonholonomic variational principle.J. Phys. A: Math. Theor., 42, 2009, 185201 (40pp). Zbl 1198.70008, MR 2591195, 10.1088/1751-8113/42/18/185201
Reference: [20] Krupková, O.: The geometric mechanics on nonholonomic submanifolds.Comm. Math., 18, 2010, 51-77, MR 2848506
Reference: [21] Krupková, O., Musilová, J.: The relativistic particle as a mechanical system with non-holonomic constraints.J. Phys. A: Math. Gen., 34, 2001, 3859-3875, MR 1840850, 10.1088/0305-4470/34/18/313
Reference: [22] Krupková, O., Musilová, J.: Nonholonomic variational systems.Rep. Math. Phys., 55, 2, 2005, 211-220, Zbl 1134.37356, MR 2139585, 10.1016/S0034-4877(05)80028-X
Reference: [23] Massa, E., Pagani, E.: Classical mechanics of non-holonomic systems: a geometric approach.Ann. Inst. Henri Poincaré, 55, 1991, 511-544, MR 1130215
Reference: [24] Massa, E., Pagani, E.: A new look at classical mechanics of constrained systems.Ann. Inst. Henri Poincaré, 66, 1997, 1-36, Zbl 0878.70009, MR 1434114
Reference: [25] Mráz, M., Musilová, J.: Variational compatibility of force laws in mechanics.Differential Geometry and its Applications, 1999, 553-560, Masaryk Univ., Brno, MR 1712786
Reference: [26] Neimark, Ju.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs, vol. 33.1972, American Mathematical Society, Rhode Island,
Reference: [27] Novotný, J.: On the inverse variational problem in the classical mechanics.Proc. Conf. on Diff. Geom. and Its Appl. 1980, 1981, 189-195, Universita Karlova, Prague, MR 0663225
Reference: [28] Popescu, P., Ida, Ch.: Nonlinear constraints in nonholonomic mechanics.arXiv: submit/1026356 [marh-ph] 20 Jul 2014.. MR 3294222
Reference: [29] Roithmayr, C.M., Hodges, D.H.: Forces associated with non-linear non-holonomic constraint equations.Int. J. Non-Linear Mech., 45, 2010, 357-369, 10.1016/j.ijnonlinmec.2009.12.009
Reference: [30] Rossi, O., Musilová, J.: On the inverse variational problem in nonholonomic mechanics.Comm. Math., 20, 1, 2012, 41-62, Zbl 1271.49027, MR 3001631
Reference: [31] Rossi, O., Musilová, J.: The relativistic mechanics in a nonholonomic setting: A unified approach to particles with non-zero mass and massless particles.J. Phys A: Math. Theor., 45, 2012, 255202. MR 2930485
Reference: [32] Rossi, O., Paláček, R.: On the Zermelo problem in Riemannian manifolds.Balkan Journal of Geometry and Its Applications, 17, 2, 2012, 77-81, MR 2911969
Reference: [33] Sarlet, W., Cantrijn, F.: Special symmetries for Lagrangian systems snd their analogues in nonconservative mechanics.Difrerential Geometry and its Applications. Proc. Conf. Nové Město na Moravě, Czechoslovakia, September 1983, 1984, 247-260, J.E. Purkyně University, Brno, MR 0793214
Reference: [34] Sarlet, W., Cantrijn, F., Saunders, D.J.: A geometrical framework for the study of non-holonomic Lagrangian systems.J. Phys. A: Math. Gen., 28, 1995, 3253-3268, Zbl 0858.70013, MR 1344117, 10.1088/0305-4470/28/11/022
Reference: [35] Sarlet, W., Saunders, D.J., Cantrijn, F.: A geometrical framework for the study of non-holonomic Lagrangian systems II.J. Phys. A: Math. Gen., 29, 1996, 4265-4274, Zbl 0900.70196, MR 1406933, 10.1088/0305-4470/29/14/042
Reference: [36] Sarlet, W., Saunders, D.J., Cantrijn, F.: Adjoint symmetries and the generation of first integrals in non-holonomic mechanics.Journal of Geometry and Physics, 55, 2005, 207-225, Zbl 1093.37026, MR 2157043, 10.1016/j.geomphys.2004.12.006
Reference: [37] Swaczyna, M.: Several examples of nonholonomic mechanical systems.Comm. Math., 19, 2011, 27-56, MR 2855390
Reference: [38] Swaczyna, M., Volný, P.: Uniform projectile motion: Dynamics, symmetries and conservation laws.Rep. Math. Phys., 73, 2, 2014, 177-200, Zbl 1308.70017, MR 3285508, 10.1016/S0034-4877(14)60039-2
Reference: [39] Udwadia, F.E.: Equations of motion for mechanical systems: A unified approach.Int. J. Non-Linear Mech., 31, 1996, 951-958, Zbl 0891.70010, 10.1016/S0020-7462(96)00116-3
Reference: [40] Udwadia, F.E., Kalaba, R.E.: On the foundations of analytical dynamics.Int. J. Non-Linear Mech., 37, 2002, 1079-1090, MR 1897289, 10.1016/S0020-7462(01)00033-6
.

Files

Files Size Format View
ActaOstrav_22-2014-2_5.pdf 818.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo