[1] Angenent, S.: 
The zero set of a solution of a parabolic equation. J. Reine Angew. Math. 390 (1988), 79-96. 
MR 0953678 | 
Zbl 0644.35050[5] Gallay, T., Slijepčević, S.: Distribution of energy and convergence to equilibria in extended dissipative systems. (to appear) in J. Dyn. Differ. Equations.
[7] Katok, A., Hasselblatt, B.: 
Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and Its Applications 54 Cambridge University Press, Cambridge (1995). 
MR 1326374 | 
Zbl 0878.58020[8] Miranville, A., Zelik, S.: 
Attractors for dissipative partial differential equations in bounded and unbounded domains. Handbook of differential equations: Evolutionary Equations. Vol. IV C. M. Dafermos, M. Pokorný 103-200 Elsevier/North-Holland, Amsterdam (2008). 
DOI 10.1016/S1874-5717(08)00003-0 | 
MR 2508165 | 
Zbl 1221.37158[12] Slijepčević, S.: Ergodic Poincaré-Bendixson theorem for scalar reaction-diffusion equations. Preprint. 
[15] Zelik, S.: 
Formally gradient reaction-diffusion systems in $\mathbb{R}^{n}$ have zero spatio-temporal topological entropy. Discrete Contin. Dyn. Syst. suppl. vol. (2003), 960-966. 
MR 2018206[16] Zelik, S., Mielke, A.: 
Multi-pulse evolution and space-time chaos in dissipative systems. Mem. Am. Math. Soc. 198 (2009), 1-97. 
MR 2499464 | 
Zbl 1163.37003