Previous |  Up |  Next

Article

Title: Some necessary and sufficient conditions for nilpotent $n$-Lie superalgebras (English)
Author: Guan, Baoling
Author: Chen, Liangyun
Author: Ma, Yao
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 4
Year: 2014
Pages: 1019-1034
Summary lang: English
.
Category: math
.
Summary: The paper studies nilpotent $n$-Lie superalgebras over a field of characteristic zero. More specifically speaking, we prove Engel's theorem for $n$-Lie superalgebras which is a generalization of those for $n$-Lie algebras and Lie superalgebras. In addition, as an application of Engel's theorem, we give some properties of nilpotent $n$-Lie superalgebras and obtain several sufficient conditions for an $n$-Lie superalgebra to be nilpotent by using the notions of the maximal subalgebra, the weak ideal and the Jacobson radical. (English)
Keyword: nilpotent $n$-Lie superalgebra
Keyword: Engel's theorem
Keyword: $S^{\ast }$ algebra
Keyword: Frattini subalgebra
MSC: 17A42
MSC: 17A70
MSC: 17B45
MSC: 17B50
idZBL: Zbl 06433711
idMR: MR3304795
DOI: 10.1007/s10587-014-0150-5
.
Date available: 2015-02-09T17:37:32Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144158
.
Reference: [1] Albeverio, S., Ayupov, S. A., Omirov, B. A., Turdibaev, R. M.: Cartan subalgebras of Leibniz $n$-algebras.Commun. Algebra 37 (2009), 2080-2096. Zbl 1236.17004, MR 2530764, 10.1080/00927870802319406
Reference: [2] Bai, R. P., Chen, L. Y., Meng, D. J.: The Frattini subalgebra of $n$-Lie algebras.Acta Math. Sin., Engl. Ser. 23 (2007), 847-856. Zbl 1152.17004, MR 2307826, 10.1007/s10114-005-0923-8
Reference: [3] Barnes, D. W.: Some theorems on Leibniz algebras.Commun. Algebra 39 (2011), 2463-2472. Zbl 1268.17001, MR 2821724, 10.1080/00927872.2010.489529
Reference: [4] Barnes, D. W.: Engel subalgebras of $n$-Lie algebras.Acta Math. Sin., Engl. Ser. 24 (2008), 159-166. Zbl 1176.17002, MR 2384240, 10.1007/s10114-007-1008-7
Reference: [5] Camacho, L. M., Casas, J. M., Gómez, J. R., Ladra, M., Omirov, B. A.: On nilpotent Leibniz $n$-algebras.J. Algebra Appl. 11 (2012), Article ID 1250062, 17 pages. Zbl 1302.17003, MR 2928129, 10.1142/S0219498812500624
Reference: [6] Cantarini, N., Kac, V. G.: Classification of simple linearly compact $n$-Lie superalgebras.Commun. Math. Phys. 298 (2010), 833-853. Zbl 1232.17008, MR 2670929, 10.1007/s00220-010-1049-0
Reference: [7] Casas, J. M., Khmaladze, E., Ladra, M.: On solvability and nilpotency of Leibniz $n$-algebras.Commun. Algebra 34 (2006), 2769-2780. Zbl 1127.17003, MR 2250568, 10.1080/00927870600636423
Reference: [8] Chao, C.-Y.: Some characterizations of nilpotent Lie algebras.Math. Z. 103 (1968), 40-42. Zbl 0178.03603, MR 0223415, 10.1007/BF01111285
Reference: [9] Chao, C. Y., Stitzinger, E. L.: On nilpotent Lie algebras.Arch. Math. 27 (1976), 249-252. Zbl 0334.17004, MR 0409580, 10.1007/BF01224667
Reference: [10] Chen, L., Meng, D.: On the intersection of maximal subalgebras in a Lie superalgebra.Algebra Colloq. 16 (2009), 503-516. Zbl 1235.17009, MR 2536774
Reference: [11] Daletskiĭ, Y. L., Kushnirevich, V. A.: Inclusion of the Nambu-Takhtajan algebra in the structure of formal differential geometry.Dopov. Akad. Nauk Ukr. 1996 Russian (1996), 12-17. MR 1417608
Reference: [12] Gago, F., Ladra, M., Omirov, B. A., Turdibaev, R. M.: Some radicals, Frattini and Cartan subalgebras of Leibniz {$n$}-algebras.Linear Multilinear Algebra 61 (2013), 1510-1527. MR 3175382, 10.1080/03081087.2012.758260
Reference: [13] Kasymov, S. M.: On a theory of {$n$}-Lie algebras.Algebra i Logika 26 (1987), Russian 277-297 English translation in Algebra and Logic 26 155-166 (1987). MR 0962883, 10.1007/BF02009328
Reference: [14] Ray, C. B., Combs, A., Gin, N., Hedges, A., Hird, J. T., Zack, L.: Nilpotent Lie and Leibniz algebras.Commun. Algebra 42 (2014), 2404-2410. MR 3169714, 10.1080/00927872.2012.717655
Reference: [15] Williams, M. P.: Nilpotent {$n$}-Lie algebras.Commun. Algebra 37 (2009), 1843-1849. Zbl 1250.17003, MR 2530747, 10.1080/00927870802108007
.

Files

Files Size Format View
CzechMathJ_64-2014-4_11.pdf 306.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo