Previous |  Up |  Next

Article

Title: Connectedness of some rings of quotients of $C(X)$ with the $m$-topology (English)
Author: Azarpanah, F.
Author: Paimann, M.
Author: Salehi, A. R.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 1
Year: 2015
Pages: 63-76
Summary lang: English
.
Category: math
.
Summary: In this article we define the $m$-topology on some rings of quotients of $C(X)$. Using this, we equip the classical ring of quotients $q(X)$ of $C(X)$ with the $m$-topology and we show that $C(X)$ with the $r$-topology is in fact a subspace of $q(X)$ with the $m$-topology. Characterization of the components of rings of quotients of $C(X)$ is given and using this, it turns out that $q(X)$ with the $m$-topology is connected if and only if $X$ is a pseudocompact almost $P$-space, if and only if $C(X)$ with $r$-topology is connected. We also observe that the maximal ring of quotients $Q(X)$ of $C(X)$ with the $m$-topology is connected if and only if $X$ is finite. Finally for each point $x$, we introduce a natural ring of quotients of $C(X)/O_x$ which is connected with the $m$-topology. (English)
Keyword: $r$-topology
Keyword: $m$-topology
Keyword: almost $P$-space
Keyword: pseudocompact space
Keyword: component
Keyword: classical ring of quotients of $C(X)$
MSC: 54C35
MSC: 54C40
idZBL: Zbl 06433806
idMR: MR3311578
DOI: 10.14712/1213-7243.015.106
.
Date available: 2015-03-10T17:37:14Z
Last updated: 2017-04-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144189
.
Reference: [1] Azarpanah F., Manshoor F., Mohamadian R.: Connectedness and compactness in $C(X)$ with the $m$-topology and generalized $m$-topology.Topology Appl. 159 (2012), 3486–3493. Zbl 1255.54009, MR 2964861, 10.1016/j.topol.2012.08.010
Reference: [2] Comfort W.W., Negrepontis S.: The Theory of Ultrafilters.Die Grundelehren der Math. Wissenschaften, 211, Springer, New York-Heidelberg-Berlin, 1974. Zbl 0298.02004, MR 0396267
Reference: [3] Dashiell F., Hager A., Henriksen M.: Order-Cauchy completions of rings and vector lattices of continuous functions.Canad. J. Math. 32 (1980), no. 3, 657–685. Zbl 0462.54009, MR 0586984, 10.4153/CJM-1980-052-0
Reference: [4] Engelking R.: General Topology.PWN-Polish Sci. Publ., Warsaw, 1977. Zbl 0684.54001, MR 0500780
Reference: [5] Fine N.J., Gillman L., Lambek J.: Rings of quotients of rings of continuous functions.Lecture Note Series, McGill University Press, Montreal, 1966. MR 0200747
Reference: [6] Gillman L., Jerison M.: Rings of Continuous Functions.Springer, New York-Heidelberg, 1976. Zbl 0327.46040, MR 0407579
Reference: [7] Gomez-Pérez J., McGovern W.W.: The $m$-topology on $C_m(X)$ revisited.Topology Appl. 153 (2006), 1838–1848. Zbl 1117.54045, MR 2227030, 10.1016/j.topol.2005.06.016
Reference: [8] Iberkleid W., Lafuente-Rodriguez R., McGovern W.Wm.: The regular topology on $C(X)$.Comment. Math. Univ. Carolin. 52 (2011), no. 3, 445–461. Zbl 1249.54037, MR 2843236
Reference: [9] Henriksen M., Mitra B.: $C(X)$ can sometimes determine $X$ without $X$ being realcompact.Comment. Math. Univ. Carolin. 46 (2005), no. 4, 711–720. Zbl 1121.54035, MR 2259501
Reference: [10] Hewitt E.: Rings of real-valued continuous functions I.Trans. Amer. Math. Soc. 48 (64) (1948), 54–99. Zbl 0032.28603, MR 0026239
Reference: [11] Johnson D.G., Mandelker M.: Functions with pseudocompact support.General Topology Appl. 3 (1973), 331–338. Zbl 0277.54009, MR 0331310, 10.1016/0016-660X(73)90020-2
Reference: [12] Di Maio G., Holá L'., Holý D., McCoy D.: Topology on the space of continuous functions.Topology Appl. 86 (1998), 105–122. MR 1621396, 10.1016/S0166-8641(97)00114-4
Reference: [13] Swardson M.: A generalization of $F$-spaces and some topological characterizations of GCH.Trans. Amer. Math. Soc. 279 (1983), 661–675. Zbl 0535.54023, MR 0709575
Reference: [14] van Douwen E.K.: Nonnormality or hereditary paracompactness of some spaces of real functions.Topology Appl. 39 (1991), 3–32. Zbl 0755.54008, MR 1103988, 10.1016/0166-8641(91)90072-T
Reference: [15] Walker R.C.: The Stone-Čech Compactification.Springer, Berlin-Heidelberg-New York, 1974. Zbl 0292.54001, MR 0380698
Reference: [16] Warner S.: Topological Rings.North-Holland Mathematics Studies, 178, North-Holland, Ansterdam, 1993. Zbl 0785.13008, MR 1240057
Reference: [17] Wilard S.: General Topology.Addison-Wesley, Readings, MA, 1970. MR 0264581
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-1_6.pdf 288.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo