Previous |  Up |  Next

Article

Title: Classification of $4$-dimensional homogeneous weakly Einstein manifolds (English)
Author: Arias-Marco, Teresa
Author: Kowalski, Oldřich
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 1
Year: 2015
Pages: 21-59
Summary lang: English
.
Category: math
.
Summary: Y. Euh, J. Park and K. Sekigawa were the first authors who defined the concept of a weakly Einstein Riemannian manifold as a modification of that of an Einstein Riemannian manifold. The defining formula is expressed in terms of the Riemannian scalar invariants of degree two. This concept was inspired by that of a super-Einstein manifold introduced earlier by A. Gray and T. J. Willmore in the context of mean-value theorems in Riemannian geometry. The dimension $4$ is the most interesting case, where each Einstein space is weakly Einstein. The original authors gave two examples of homogeneous weakly Einstein manifolds (depending on one, or two parameters, respectively) which are not Einstein. The goal of this paper is to prove that these examples are the only existing examples. We use, for this purpose, the classification of $4$-dimensional homogeneous Riemannian manifolds given by L. Bérard Bergery and, also, the basic method and many explicit formulas from our previous article with different topic published in Czechoslovak Math. J. in 2008. We also use Mathematica 7.0 to organize better the tedious routine calculations. The problem of existence of non-homogeneous weakly Einstein spaces in dimension $4$ which are not Einstein remains still unsolved. (English)
Keyword: Riemannian homogeneous manifold
Keyword: Einstein manifold
Keyword: weakly Einstein manifold
MSC: 53B21
MSC: 53C21
MSC: 53C25
MSC: 53C30
idZBL: Zbl 06433720
idMR: MR3336024
DOI: 10.1007/s10587-015-0159-4
.
Date available: 2015-04-01T12:18:40Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144212
.
Reference: [1] Arias-Marco, T., Kowalski, O.: Classification of $4$-dimensional homogeneous D'Atri spaces.Czech. Math. J. 58 (2008), 203-239. Zbl 1174.53024, MR 2402535, 10.1007/s10587-008-0014-y
Reference: [2] Bergery, L. Bérard: Four-dimensional homogeneous Riemannian spaces.Riemannian Geometry in Dimension 4. Papers from the Arthur Besse seminar held at the Université de Paris VII, Paris, 1978/1979 L. Bérard Bergery et al. Mathematical Texts 3 CEDIC, Paris (1981), French. MR 0769130
Reference: [3] Boeckx, E., Vanhecke, L.: Unit tangent sphere bundles with constant scalar curvature.Czech. Math. J. 51 (2001), 523-544. Zbl 1079.53063, MR 1851545, 10.1023/A:1013779805244
Reference: [4] Graaf, W. A. de: Classification of solvable Lie algebras.Exp. Math. 14 (2005), 15-25. Zbl 1173.17300, MR 2146516, 10.1080/10586458.2005.10128911
Reference: [5] Euh, Y., Park, J., Sekigawa, K.: A curvature identity on a $4$-dimensional Riemannian manifold.Result. Math. 63 (2013), 107-114. Zbl 1273.53009, MR 3009674, 10.1007/s00025-011-0164-3
Reference: [6] Euh, Y., Park, J., Sekigawa, K.: A generalization of a $4$-dimensional Einstein manifold.Math. Slovaca 63 (2013), 595-610. MR 3071978
Reference: [7] Euh, Y., Park, J., Sekigawa, K.: Critical metrics for quadratic functionals in the curvature on $4$-dimensional manifolds.Differ. Geom. Appl. 29 (2011), 642-646. Zbl 1228.58010, MR 2831820, 10.1016/j.difgeo.2011.07.001
Reference: [8] Gray, A., Willmore, T. J.: Mean-value theorems for Riemannian manifolds.Proc. R. Soc. Edinb., Sect. A 92 (1982), 343-364. Zbl 0495.53040, MR 0677493, 10.1017/S0308210500032571
Reference: [9] Jensen, G. R.: Homogeneous Einstein spaces of dimension four.J. Differ. Geom. 3 (1969), 309-349. Zbl 0194.53203, MR 0261487, 10.4310/jdg/1214429056
Reference: [10] Milnor, J. W.: Curvatures of left invariant metrics on Lie groups.Adv. Math. 21 (1976), 293-329. Zbl 0341.53030, MR 0425012, 10.1016/S0001-8708(76)80002-3
.

Files

Files Size Format View
CzechMathJ_65-2015-1_2.pdf 414.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo