Previous |  Up |  Next

Article

Title: Riemannian foliations with parallel or harmonic basic forms (English)
Author: El Chami, Fida
Author: Habib, Georges
Author: Nakad, Roger
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 51
Issue: 1
Year: 2015
Pages: 51-65
Summary lang: English
.
Category: math
.
Summary: In this paper, we consider a Riemannian foliation that admits a nontrivial parallel or harmonic basic form. We estimate the norm of the O’Neill tensor in terms of the curvature data of the whole manifold. Some examples are then given. (English)
Keyword: Riemannian foliation
Keyword: parallel and harmonic basic forms
Keyword: O’Neill tensor
MSC: 53C12
MSC: 53C20
MSC: 53C24
MSC: 57R30
idZBL: Zbl 06487020
idMR: MR3338765
DOI: 10.5817/AM2015-1-51
.
Date available: 2015-04-01T12:52:02Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144233
.
Reference: [1] El Soufi, A., Petit, R.: Géométrie des sous-variétés admettant une structure kählérienne ou un second nombre de Betti non nul.Actes de Congrès de Géométrie d'Oran, 1989, p. 17 pp.
Reference: [2] Gromoll, D., Grove, K.: The low dimensional metric foliations of Euclidean spheres.J. Differential Geom. 28 (1988), 143–156. Zbl 0683.53030, MR 0950559
Reference: [3] Grosjean, J.–F.: Minimal submanifolds with a parallel or a harmonic $p$–form.J. Geom. Phys. 51 (2004), 211–228. Zbl 1074.53050, MR 2078671, 10.1016/j.geomphys.2003.10.009
Reference: [4] Habib, G., Richardson, K: Modified differentials and basic cohomology for Riemannian foliations.J. Geom. Anal. 23 (2013), 1314–1342. Zbl 1276.53031, MR 3078356, 10.1007/s12220-011-9289-6
Reference: [5] Hobum, K., Tondeur, P.: Riemannian foliations on manifolds with non-negative curvature.Manuscripta Math. 74 (1992), 39–45. Zbl 0763.53036, MR 1141775, 10.1007/BF02567656
Reference: [6] Leung, P.F.: Minimal submanifolds in a sphere.Math. Z. 183 (1983), 75–86. Zbl 0491.53045, MR 0701359, 10.1007/BF01187216
Reference: [7] O’Neill, B.: The fundamental equations of a submersion.Michigan Math. J. 13 (1966), 459–469. MR 0200865, 10.1307/mmj/1028999604
Reference: [8] Ranjan, A.: On a remark of O’Neill.Duke Math. J. 53 (1981), 363–373. MR 0835797
Reference: [9] Reinhart, B.: Foliated manifolds with bundle-like metrics.Ann. of Math. (2) 69 (1959), 119–132. Zbl 0122.16604, MR 0107279, 10.2307/1970097
Reference: [10] Tondeur, P.: Geometry of Foliations.Birkhäuser, Boston, 1997. Zbl 0905.53002, MR 1456994
.

Files

Files Size Format View
ArchMathRetro_051-2015-1_4.pdf 491.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo