Previous |  Up |  Next

Article

Title: Banach spaces of homogeneous polynomials without the approximation property (English)
Author: Dineen, Seán
Author: Mujica, Jorge
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 2
Year: 2015
Pages: 367-374
Summary lang: English
.
Category: math
.
Summary: We present simple proofs that spaces of homogeneous polynomials on $L_{p}[0,1]$ and $\ell _{p}$ provide plenty of natural examples of Banach spaces without the approximation property. By giving necessary and sufficient conditions, our results bring to completion, at least for an important collection of Banach spaces, a circle of results begun in 1976 by R. Aron and M. Schottenloher (1976). (English)
Keyword: Banach space
Keyword: approximation property
Keyword: linear operator
Keyword: homogeneous polynomial
Keyword: holomorphic function
MSC: 46B28
MSC: 46G20
MSC: 46G25
idZBL: Zbl 06486952
idMR: MR3360432
DOI: 10.1007/s10587-015-0181-6
.
Date available: 2015-06-16T17:44:06Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144275
.
Reference: [1] Alencar, R.: On reflexivity and basis for {$P(^mE)$}.Proc. R. Ir. Acad., Sect. A 85 (1985), 131-138. MR 0845536
Reference: [2] Arias, A., Farmer, J. D.: On the structure of tensor products of {$l_p$}-spaces.Pac. J. Math. 175 (1996), 13-37. MR 1419470, 10.2140/pjm.1996.175.13
Reference: [3] Aron, R. M., Schottenloher, M.: Compact holomorphic mappings on Banach spaces and the approximation property.J. Funct. Anal. 21 (1976), 7-30. Zbl 0328.46046, MR 0402504, 10.1016/0022-1236(76)90026-4
Reference: [4] Banach, S.: Théorie des Opérations Linéaires.Chelsea Publishing Co. New York French (1955). Zbl 0067.08902, MR 0071726
Reference: [5] Coeuré, G.: Fonctions plurisousharmoniques sur les espaces vectoriels topologiques et applications a l'étude des fonctions analytiques.Ann. Inst. Fourier 20 French (1970), 361-432. Zbl 0187.39003, MR 0274804, 10.5802/aif.345
Reference: [6] Defant, A., Floret, K.: Tensor Norms and Operator Ideals.North-Holland Mathematics Studies 176 North-Holland, Amsterdam (1993). Zbl 0774.46018, MR 1209438
Reference: [7] Díaz, J. C., Dineen, S.: Polynomials on stable spaces.Ark. Mat. 36 (1998), 87-96. Zbl 0929.46036, MR 1611149, 10.1007/BF02385668
Reference: [8] Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators.Cambridge Studies in Advanced Mathematics 43 Cambridge Univ. Press, Cambridge (1995). Zbl 0855.47016, MR 1342297
Reference: [9] J. Diestel, J. J. Uhl, Jr.: Vector Measures.Mathematical Surveys 15 American Mathematical Society, Providence (1977). Zbl 0369.46039, MR 0453964
Reference: [10] Dineen, S.: Complex Analysis on Infinite Dimensional Spaces.Springer Monographs in Mathematics Springer, London (1999). Zbl 1034.46504, MR 1705327, 10.1007/978-1-4471-0869-6
Reference: [11] Dineen, S., Mujica, J.: The approximation property for spaces of holomorphic functions on infinite dimensional spaces. {III}.Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 106 (2012), 457-469. Zbl 1266.46036, MR 2978926, 10.1007/s13398-012-0065-7
Reference: [12] Dineen, S., Mujica, J.: The approximation property for spaces of holomorphic functions on infinite dimensional spaces. {II}.J. Funct. Anal. 259 (2010), 545-560. Zbl 1195.46038, MR 2644113, 10.1016/j.jfa.2010.04.001
Reference: [13] Dineen, S., Mujica, J.: The approximation property for spaces of holomorphic functions on infinite-dimensional spaces. I.J. Approx. Theory 126 (2004), 141-156. Zbl 1060.41031, MR 2045536, 10.1016/j.jat.2004.01.008
Reference: [14] Enflo, P.: A counterexample to the approximation problem in Banach spaces.Acta Math. 130 (1973), 309-317. Zbl 0267.46012, MR 0402468, 10.1007/BF02392270
Reference: [15] Floret, K.: Natural norms on symmetric tensor products of normed spaces. Proceedings of the Second International Workshop on Functional Analysis, Trier, 1997.Note Mat. 17 (1997), 153-188. MR 1749787
Reference: [16] Gelbaum, B. R., Lamadrid, J. G. de: Bases of tensor products of Banach spaces.Pac. J. Math. 11 (1961), 1281-1286. Zbl 0106.08604, MR 0147881, 10.2140/pjm.1961.11.1281
Reference: [17] Godefroy, G., Saphar, P. D.: Three-space problems for the approximation properties.Proc. Am. Math. Soc. 105 (1989), 70-75. Zbl 0674.46009, MR 0930249, 10.1090/S0002-9939-1989-0930249-6
Reference: [18] Grothendieck, A.: Produits Tensoriels Topologiques et Espaces Nucléaires.Mem. Am. Math. Soc. 16 French (1955), 140 pages. Zbl 0123.30301, MR 0075539
Reference: [19] Mujica, J.: Complex Analysis in Banach Spaces. Holomorphic Functions and Domains of Holomorphy in Finite and Infinite Dimensions.North-Holland Math. Stud. 120. Notas de Matemática 107 North-Holland, Amsterdam (1986). Zbl 0586.46040, MR 0842435
Reference: [20] Mujica, J.: Spaces of holomorphic functions and the approximation property.Lecture Notes, Universidad Complutense de Madrid, 2009.
Reference: [21] Nachbin, L.: Sur les espaces vectoriels topologiques d'applications continues.C. R. Acad. Sci., Paris, Sér. A 271 French (1970), 596-598. Zbl 0205.12402, MR 0271712
Reference: [22] Nachbin, L.: On the topology of the space of all holomorphic functions on a given open subset.Nederl. Akad. Wet., Proc., Ser. A 70 Indag. Math. 29 (1967), 366-368. Zbl 0147.11402, MR 0215066
Reference: [23] Pełczyński, A.: Projections in certain Banach spaces.Stud. Math. 19 (1960), 209-228. Zbl 0104.08503, MR 0126145, 10.4064/sm-19-2-209-228
Reference: [24] Pełczyński, A.: A property of multilinear operations.Stud. Math. 16 (1957), 173-182. Zbl 0080.09701, MR 0093698, 10.4064/sm-16-2-173-182
Reference: [25] Pietsch, A.: History of Banach Spaces and Linear Operators.Birkhäuser Basel (2007). Zbl 1121.46002, MR 2300779
Reference: [26] Pisier, G.: De nouveaux espaces de Banach sans la propriété d'approximation (d'après A. Szankowski).Séminaire Bourbaki 1978/79 Lecture Notes in Math. 770 Springer, Berlin French (1980), 312-327. Zbl 0443.46015, MR 0572431
Reference: [27] Szankowski, A.: $B({\cal H})$ does not have the approximation property.Acta Math. 147 (1981), 89-108. MR 0631090, 10.1007/BF02392870
.

Files

Files Size Format View
CzechMathJ_65-2015-2_7.pdf 238.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo