Previous |  Up |  Next

Article

Title: Generalized Tanaka-Webster and Levi-Civita connections for normal Jacobi operator in complex two-plane Grassmannians (English)
Author: Pak, Eunmi
Author: Pérez, Juan de Dios
Author: Suh, Young Jin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 2
Year: 2015
Pages: 569-577
Summary lang: English
.
Category: math
.
Summary: We study classifying problems of real hypersurfaces in a complex two-plane Grassmannian $G_2({\mathbb C}^{m+2})$. In relation to the generalized Tanaka-Webster connection, we consider that the generalized Tanaka-Webster derivative of the normal Jacobi operator coincides with the covariant derivative. In this case, we prove complete classifications for real hypersurfaces in $G_2({\mathbb C}^{m+2})$ satisfying such conditions. (English)
Keyword: real hypersurface
Keyword: complex two-plane Grassmannian
Keyword: Hopf hypersurface
Keyword: Levi-Civita connection
Keyword: generalized Tanaka-Webster connection
Keyword: normal Jacobi operator
MSC: 53B05
MSC: 53C15
MSC: 53C40
idZBL: Zbl 06486967
idMR: MR3360447
DOI: 10.1007/s10587-015-0196-z
.
Date available: 2015-06-16T18:09:31Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144290
.
Reference: [1] Alekseevskii, D. V.: Compact quaternion spaces.Funkts. Anal. Prilozh. Russian 2 (1968), 11-20. MR 0231314
Reference: [2] Berndt, J., Suh, Y. J.: Real hypersurfaces with isometric Reeb flow in complex two-plane Grassmannians.Monatsh. Math. 137 (2002), 87-98. Zbl 1015.53034, MR 1937621, 10.1007/s00605-001-0494-4
Reference: [3] Berndt, J., Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians.Monatsh. Math. 127 (1999), 1-14. Zbl 0920.53016, MR 1666307, 10.1007/s006050050018
Reference: [4] Cho, J. T.: CR-structures on real hypersurfaces of a complex space form.Publ. Math. 54 (1999), 473-487. Zbl 0929.53029, MR 1694456
Reference: [5] Jeong, I., Kim, H. J., Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians with parallel normal Jacobi operator.Publ. Math. 76 (2010), 203-218. Zbl 1274.53080, MR 2598182
Reference: [6] Jeong, I., Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians with $\frak F$-parallel normal Jacobi operator.Kyungpook Math. J. 51 (2011), 395-410. Zbl 1260.53093, MR 2874974, 10.5666/KMJ.2011.51.4.395
Reference: [7] Ki, U.-H., Pérez, J. D., Santos, F. G., Suh, Y. J.: Real hypersurfaces in complex space forms with $\xi$-parallel Ricci tensor and structure Jacobi operator.J. Korean Math. Soc. 44 (2007), 307-326. Zbl 1144.53069, MR 2295391, 10.4134/JKMS.2007.44.2.307
Reference: [8] Kon, M.: Real hypersurfaces in complex space forms and the generalized Tanaka-Webster connection.Proc. of Workshop on Differential Geometry and Related Fields, Taegu, Korea, 2009 Y. J. Suh et al. Korean Mathematical Society and Grassmann Research Group Natl. Inst. Math. Sci., Taegu (2009), 145-159. Zbl 1185.53058, MR 2641131
Reference: [9] Lee, H., Suh, Y. J.: Real hypersurfaces of type $B$ in complex two-plane Grassmannians related to the Reeb vector.Bull. Korean Math. Soc. 47 (2010), 551-561. Zbl 1206.53064, MR 2666376, 10.4134/BKMS.2010.47.3.551
Reference: [10] Lee, H., Suh, Y. J., Woo, C.: Real hypersurfaces in complex two-plane Grassmannians with commuting Jacobi operators.Houston J. Math. 40 (2014), 751-766. MR 3275621
Reference: [11] Pak, E., Pérez, J. D., Machado, C. J. G., Woo, C.: Hopf hypersurfaces in complex two-plane Grassmannians with generalized Tanaka-Webster parallel normal Jacobi operator.Czech. Math. J. 65 (2015), 207-218. MR 3336034, 10.1007/s10587-015-0169-2
Reference: [12] Pérez, J. D., Jeong, I., Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians with commuting normal Jacobi operator.Acta Math. Hungar. 117 (2007), 201-217. Zbl 1220.53070, MR 2361601, 10.1007/s10474-007-6091-9
Reference: [13] Pérez, J. D., Suh, Y. J.: Real hypersurfaces of quaternionic projective space satisfying $\nabla_{U_i} R = 0$.Differ. Geom. Appl. 7 (1997), 211-217. Zbl 0901.53011, MR 1480534, 10.1016/S0926-2245(97)00003-X
Reference: [14] Tanaka, N.: On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections.Jap. J. Math., New Ser. 2 (1976), 131-190. Zbl 0346.32010, MR 0589931, 10.4099/math1924.2.131
Reference: [15] Tanno, S.: Variational problems on contact Riemannian manifolds.Trans. Am. Math. Soc. 314 (1989), 349-379. Zbl 0677.53043, MR 1000553, 10.1090/S0002-9947-1989-1000553-9
Reference: [16] Webster, S. M.: Pseudo-Hermitian structures on a real hypersurface.J. Differ. Geom. 13 (1978), 25-41. Zbl 0379.53016, MR 0520599, 10.4310/jdg/1214434345
.

Files

Files Size Format View
CzechMathJ_65-2015-2_22.pdf 250.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo