Previous |  Up |  Next

Article

Title: Characterizations of Archimedean $n$-copulas (English)
Author: Wysocki, Włodzimierz
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 2
Year: 2015
Pages: 212-230
Summary lang: English
.
Category: math
.
Summary: We present three characterizations of $n$-dimensional Archimedean copulas: algebraic, differential and diagonal. The first is due to Jouini and Clemen. We formulate it in a more general form, in terms of an $n$-variable operation derived from a binary operation. The second characterization is in terms of first order partial derivatives of the copula. The last characterization uses diagonal generators, which are ``regular'' diagonal sections of copulas, enabling one to recover the copulas by means of an asymptotic representation. (English)
Keyword: Archimedean operation
Keyword: additive generator
Keyword: diagonal generator
Keyword: multiplicative generator
Keyword: (Archimedean) $n$-copula
Keyword: (Archimedean) $n$-quasicopula
MSC: 62H20
idZBL: Zbl 06487074
idMR: MR3350557
DOI: 10.14736/kyb-2015-2-0212
.
Date available: 2015-06-19T15:15:03Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144293
.
Reference: [1] Alsina, C., Nelsen, R. B., Schweizer, B.: On the characterization of a class of binary operations on distribution functions..Statist. Probab. Lett. 17 (1993), 85-89. Zbl 0798.60023, MR 1223530, 10.1016/0167-7152(93)90001-y
Reference: [2] Cuculescu, I., Theodorescu, R.: Copulas: diagonals, tracks..Rev. Roumaine Math. Pures Appl. 46 (2001), 731-742. Zbl 1032.60009, MR 1929521
Reference: [3] Dudek, W. A., Trokhimenko, V. S.: Menger algebras of multiplace functions..Universitatea de Stat din Moldova, Chişinău, 2006 (in Russian). Zbl 1115.08001, MR 2292134
Reference: [4] Durante, F., Sempi, C.: Copula theory: an introduction..In: Workshop on Copula Theory and its Applications (P. Jaworski et al. eds.), Lecture Notes in Statist. Proc. 198, Springer 2010, pp. 3-31. MR 3051261, 10.1007/978-3-642-12465-5_1
Reference: [5] sciences, Encyclopedia of statistical: Vol. 2, second edition..Wiley 2006, pp. 1363-1367.
Reference: [6] Fang, K. T., Fang, B. Q.: Some families of multivariate symmetric distributions related to exponential distribution..J. Multivariate Anal. 24 (1998), 109-122. Zbl 0635.62035, MR 0925133, 10.1016/0047-259x(88)90105-4
Reference: [7] Feller, W.: An introduction to probability theory and its applications. Vol. II, second edition..Wiley, New York 1971. MR 0270403
Reference: [8] Genest, C., MacKay, J.: Copules archimédiennes et familles des lois bidimensionnelles dont les marges sont données..Canad. J. Statist. 14 (1986), 145-159. MR 0849869, 10.2307/3314660
Reference: [9] Genest, C., MacKay, J.: The joy of copulas: Bivariate distributions with uniform marginals..Amer. Statist. 40 (1986), 280-285. MR 0866908, 10.1080/00031305.1986.10475414
Reference: [10] Genest, C., Quesada-Molina, L. J., Rodríguez-Lallena, J. A., Sempi, C.: A characterization of quasicopulas..J. Multivariate Anal. 69 (1999), 193-205. MR 1703371, 10.1006/jmva.1998.1809
Reference: [11] Gluskin, L. M.: Positional operatives..Dokl. Akad. Nauk SSSR 157 (1964), 767-770 (in Russian). Zbl 0294.08001, MR 0164915
Reference: [12] Gluskin, L. M.: Positional operatives..Mat. Sb. (N.S.) 68 (110) (1965), 444-472 (in Russian). Zbl 0294.08001, MR 0193040
Reference: [13] Gluskin, L. M.: Positional operatives..Dokl. Akad. Nauk SSSR 182 (1968), 1000-1003 (in Russian). Zbl 0294.08001, MR 0240233
Reference: [14] Hutchinson, T. P., Lai, C. D.: Continuous bivariate distributions. Emphasising applications..Rumsby Scientific, Adelaide 1990. Zbl 1170.62330, MR 1070715
Reference: [15] Jaworski, P.: On copulas and their diagonals..Inform. Sci. 179 (2009), 2863-2871. Zbl 1171.62332, MR 2547755, 10.1016/j.ins.2008.09.006
Reference: [16] Joe, H.: Multivariate Models and Dependence Concepts..Chapman and Hall, London 1997. Zbl 0990.62517, MR 1462613, 10.1002/(sici)1097-0258(19980930)17:18<2154::aid-sim913>3.0.co;2-r
Reference: [17] Jouini, M. N., Clemen, R. T.: Copula models for aggregating expert opinions..Oper. Research 44 (1996), 444-457. Zbl 0864.90067, 10.1287/opre.44.3.444
Reference: [18] Kimberling, C. H.: A probabilistic interpretation of complete monotonicity..Aequationes Math. 10 (1974), 152-164. Zbl 0309.60012, MR 0353416, 10.1007/bf01832852
Reference: [19] Kuczma, M.: Functional equations in a single variable..Monografie Mat. 46, PWN, Warszawa 1968. Zbl 0725.39003, MR 0228862
Reference: [20] Ling, C. H.: Representation of associative functions..Publ. Math. Debrecen 12 (1965), 189-212. Zbl 0137.26401, MR 0190575
Reference: [21] McNeil, A. J., Nešlehová, J.: Multivariate Archimedean copulas, $d$-monotone functions and $l_1$-norm symmetric distributions..Ann. Statist. 37 (2009), 3059-3097. MR 2541455, 10.1214/07-aos556
Reference: [22] Nelsen, R. B.: An introduction to copulas..Springer, 2006. Zbl 1152.62030, MR 2197664, 10.1007/0-387-28678-0
Reference: [23] Nelsen, R. B., Quesada-Molina, J. J., Rodr{í}guez-Lallena, J. A., Úbeda-Flores, M.: Multivariate Archimedean quasi-copulas..In: Distributions with given Marginals and Statistical Modelling. Kluwer, 2002, pp. 179-185. Zbl 1135.62338, MR 2058991, 10.1007/978-94-017-0061-0_19
Reference: [24] Rüschendorf, L.: Mathematical risk analysis. Dependence, risk bounds, optimal allocations and portfolios..Springer, 2013 (Chapter 1). Zbl 1266.91001, MR 3051756, 10.1007/978-3-642-33590-7
Reference: [25] Stupňanová, A., Kolesárová, A.: Associative $n$-dimensional copulas..Kybernetika 47 (2011), 93-99. Zbl 1225.03071, MR 2807866
Reference: [26] Sungur, E. A., Yang, Y.: Diagonal copulas of Archimedean class..Comm. Statist. Theory Methods 25 (1996), 1659-1676. Zbl 0900.62339, MR 1411104, 10.1080/03610929608831791
Reference: [27] Williamson, R. E.: Multiple monotone functions and their Laplace transforms..Duke Math. J. 23 (1956), 189-207. MR 0077581, 10.1215/s0012-7094-56-02317-1
Reference: [28] Wysocki, W.: Constructing Archimedean copulas from diagonal sections..Statist. Probab. Lett. 82 (2012), 818-826. Zbl 1242.62041, MR 2899525, 10.1016/j.spl.2012.01.008
Reference: [29] Wysocki, W.: When a copula is archimax..Statist. Probab. Lett. 83 (2013), 37-45. MR 2998721, 10.1016/j.spl.2012.01.008
.

Files

Files Size Format View
Kybernetika_51-2015-2_2.pdf 373.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo