Title:
|
Characterizations of Archimedean $n$-copulas (English) |
Author:
|
Wysocki, Włodzimierz |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
51 |
Issue:
|
2 |
Year:
|
2015 |
Pages:
|
212-230 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We present three characterizations of $n$-dimensional Archimedean copulas: algebraic, differential and diagonal. The first is due to Jouini and Clemen. We formulate it in a more general form, in terms of an $n$-variable operation derived from a binary operation. The second characterization is in terms of first order partial derivatives of the copula. The last characterization uses diagonal generators, which are ``regular'' diagonal sections of copulas, enabling one to recover the copulas by means of an asymptotic representation. (English) |
Keyword:
|
Archimedean operation |
Keyword:
|
additive generator |
Keyword:
|
diagonal generator |
Keyword:
|
multiplicative generator |
Keyword:
|
(Archimedean) $n$-copula |
Keyword:
|
(Archimedean) $n$-quasicopula |
MSC:
|
62H20 |
idZBL:
|
Zbl 06487074 |
idMR:
|
MR3350557 |
DOI:
|
10.14736/kyb-2015-2-0212 |
. |
Date available:
|
2015-06-19T15:15:03Z |
Last updated:
|
2016-01-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144293 |
. |
Reference:
|
[1] Alsina, C., Nelsen, R. B., Schweizer, B.: On the characterization of a class of binary operations on distribution functions..Statist. Probab. Lett. 17 (1993), 85-89. Zbl 0798.60023, MR 1223530, 10.1016/0167-7152(93)90001-y |
Reference:
|
[2] Cuculescu, I., Theodorescu, R.: Copulas: diagonals, tracks..Rev. Roumaine Math. Pures Appl. 46 (2001), 731-742. Zbl 1032.60009, MR 1929521 |
Reference:
|
[3] Dudek, W. A., Trokhimenko, V. S.: Menger algebras of multiplace functions..Universitatea de Stat din Moldova, Chişinău, 2006 (in Russian). Zbl 1115.08001, MR 2292134 |
Reference:
|
[4] Durante, F., Sempi, C.: Copula theory: an introduction..In: Workshop on Copula Theory and its Applications (P. Jaworski et al. eds.), Lecture Notes in Statist. Proc. 198, Springer 2010, pp. 3-31. MR 3051261, 10.1007/978-3-642-12465-5_1 |
Reference:
|
[5] sciences, Encyclopedia of statistical: Vol. 2, second edition..Wiley 2006, pp. 1363-1367. |
Reference:
|
[6] Fang, K. T., Fang, B. Q.: Some families of multivariate symmetric distributions related to exponential distribution..J. Multivariate Anal. 24 (1998), 109-122. Zbl 0635.62035, MR 0925133, 10.1016/0047-259x(88)90105-4 |
Reference:
|
[7] Feller, W.: An introduction to probability theory and its applications. Vol. II, second edition..Wiley, New York 1971. MR 0270403 |
Reference:
|
[8] Genest, C., MacKay, J.: Copules archimédiennes et familles des lois bidimensionnelles dont les marges sont données..Canad. J. Statist. 14 (1986), 145-159. MR 0849869, 10.2307/3314660 |
Reference:
|
[9] Genest, C., MacKay, J.: The joy of copulas: Bivariate distributions with uniform marginals..Amer. Statist. 40 (1986), 280-285. MR 0866908, 10.1080/00031305.1986.10475414 |
Reference:
|
[10] Genest, C., Quesada-Molina, L. J., Rodríguez-Lallena, J. A., Sempi, C.: A characterization of quasicopulas..J. Multivariate Anal. 69 (1999), 193-205. MR 1703371, 10.1006/jmva.1998.1809 |
Reference:
|
[11] Gluskin, L. M.: Positional operatives..Dokl. Akad. Nauk SSSR 157 (1964), 767-770 (in Russian). Zbl 0294.08001, MR 0164915 |
Reference:
|
[12] Gluskin, L. M.: Positional operatives..Mat. Sb. (N.S.) 68 (110) (1965), 444-472 (in Russian). Zbl 0294.08001, MR 0193040 |
Reference:
|
[13] Gluskin, L. M.: Positional operatives..Dokl. Akad. Nauk SSSR 182 (1968), 1000-1003 (in Russian). Zbl 0294.08001, MR 0240233 |
Reference:
|
[14] Hutchinson, T. P., Lai, C. D.: Continuous bivariate distributions. Emphasising applications..Rumsby Scientific, Adelaide 1990. Zbl 1170.62330, MR 1070715 |
Reference:
|
[15] Jaworski, P.: On copulas and their diagonals..Inform. Sci. 179 (2009), 2863-2871. Zbl 1171.62332, MR 2547755, 10.1016/j.ins.2008.09.006 |
Reference:
|
[16] Joe, H.: Multivariate Models and Dependence Concepts..Chapman and Hall, London 1997. Zbl 0990.62517, MR 1462613, 10.1002/(sici)1097-0258(19980930)17:18<2154::aid-sim913>3.0.co;2-r |
Reference:
|
[17] Jouini, M. N., Clemen, R. T.: Copula models for aggregating expert opinions..Oper. Research 44 (1996), 444-457. Zbl 0864.90067, 10.1287/opre.44.3.444 |
Reference:
|
[18] Kimberling, C. H.: A probabilistic interpretation of complete monotonicity..Aequationes Math. 10 (1974), 152-164. Zbl 0309.60012, MR 0353416, 10.1007/bf01832852 |
Reference:
|
[19] Kuczma, M.: Functional equations in a single variable..Monografie Mat. 46, PWN, Warszawa 1968. Zbl 0725.39003, MR 0228862 |
Reference:
|
[20] Ling, C. H.: Representation of associative functions..Publ. Math. Debrecen 12 (1965), 189-212. Zbl 0137.26401, MR 0190575 |
Reference:
|
[21] McNeil, A. J., Nešlehová, J.: Multivariate Archimedean copulas, $d$-monotone functions and $l_1$-norm symmetric distributions..Ann. Statist. 37 (2009), 3059-3097. MR 2541455, 10.1214/07-aos556 |
Reference:
|
[22] Nelsen, R. B.: An introduction to copulas..Springer, 2006. Zbl 1152.62030, MR 2197664, 10.1007/0-387-28678-0 |
Reference:
|
[23] Nelsen, R. B., Quesada-Molina, J. J., Rodr{í}guez-Lallena, J. A., Úbeda-Flores, M.: Multivariate Archimedean quasi-copulas..In: Distributions with given Marginals and Statistical Modelling. Kluwer, 2002, pp. 179-185. Zbl 1135.62338, MR 2058991, 10.1007/978-94-017-0061-0_19 |
Reference:
|
[24] Rüschendorf, L.: Mathematical risk analysis. Dependence, risk bounds, optimal allocations and portfolios..Springer, 2013 (Chapter 1). Zbl 1266.91001, MR 3051756, 10.1007/978-3-642-33590-7 |
Reference:
|
[25] Stupňanová, A., Kolesárová, A.: Associative $n$-dimensional copulas..Kybernetika 47 (2011), 93-99. Zbl 1225.03071, MR 2807866 |
Reference:
|
[26] Sungur, E. A., Yang, Y.: Diagonal copulas of Archimedean class..Comm. Statist. Theory Methods 25 (1996), 1659-1676. Zbl 0900.62339, MR 1411104, 10.1080/03610929608831791 |
Reference:
|
[27] Williamson, R. E.: Multiple monotone functions and their Laplace transforms..Duke Math. J. 23 (1956), 189-207. MR 0077581, 10.1215/s0012-7094-56-02317-1 |
Reference:
|
[28] Wysocki, W.: Constructing Archimedean copulas from diagonal sections..Statist. Probab. Lett. 82 (2012), 818-826. Zbl 1242.62041, MR 2899525, 10.1016/j.spl.2012.01.008 |
Reference:
|
[29] Wysocki, W.: When a copula is archimax..Statist. Probab. Lett. 83 (2013), 37-45. MR 2998721, 10.1016/j.spl.2012.01.008 |
. |