Previous |  Up |  Next

Article

Title: Quotient algebraic structures on the set of fuzzy numbers (English)
Author: Fechete, Dorina
Author: Fechete, Ioan
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 2
Year: 2015
Pages: 255-267
Summary lang: English
.
Category: math
.
Summary: A. M. Bica has constructed in [6] two isomorphic Abelian groups, defined on quotient sets of the set of those unimodal fuzzy numbers which have strictly monotone and continuous sides. In this paper, we extend the results of above mentioned paper, to a larger class of fuzzy numbers, by adding the flat fuzzy numbers. Furthermore, we add the topological structure and we characterize the constructed quotient groups, by using the set of the continuous functions with bounded variation, defined on $[0,1]$. (English)
Keyword: fuzzy number
Keyword: function with bounded variation
Keyword: semigroup (monoid) with involution
Keyword: topological group
Keyword: metric space
MSC: 08A72
MSC: 54H11
idZBL: Zbl 06487077
idMR: MR3350560
DOI: 10.14736/kyb-2015-2-0255
.
Date available: 2015-06-19T15:20:32Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144296
.
Reference: [1] Ban, A. I., Bede, B.: Power series of fuzzy numbers withy cross product and applications to fuzzy differential equations..J. Concrete Appl. Math 4 (2006), 2, 125-152. MR 2220289
Reference: [2] Ban, A. I., Bica, A.: Solving systems of equivalentions..J. Appl. Math. Comput. 20 (2006), 1-2, 97-118. Zbl 1104.15005, MR 2188352, 10.1007/bf02831926
Reference: [3] Bede, B.: Mathematics of Fuzzy Sets and Fuzzy Logic..Springer-Verlag, Berlin 2013. Zbl 1271.03001, MR 3024762
Reference: [4] Benvenuti, P., Mesiar, R.: Pseudo-arithmetical operations as a basis for the general measure and integration theory..Inform. Sci. 160 (2004), 1-11. Zbl 1040.28020, MR 2041855, 10.1016/j.ins.2003.07.005
Reference: [5] Bica, A. M.: One-sided fuzzy numbers and applications to integral equations from epidemiology..Fuzzy Sets and Systems 219 (2013), 27-48. Zbl 1276.92098, MR 3035732, 10.1016/j.fss.2012.08.002
Reference: [6] Bica, A. M.: Algebraic structures for fuzzy numbers from categorial point of view..Soft Computing 11 (2007), 1099-1105. Zbl 1125.03039, 10.1007/s00500-007-0167-x
Reference: [7] Bica, A.: Categories and algebrical structures for real fuzzy numbers..Pure Math. Appl. 13 (2003), 1-2, 63-77. MR 1987199
Reference: [8] Buckley, J. J.: On the algebra of interactive fuzzy numbers..Fuzzy Sets and Systems 32 (1989), 291-306. Zbl 0708.04005, MR 1018719, 10.1016/0165-0114(89)90261-3
Reference: [9] Buckley, J. J.: On the algebra of interactive fuzzy numbers: the continuous case..Fuzzy Sets and Systems 37 (1990), 317-326. Zbl 0708.04005, MR 1077148, 10.1016/0165-0114(90)90029-6
Reference: [10] Chen, S. H.: Operations of fuzzy numbers with step form membership function using function principle..Infor. Sci. 198 (1998), 149-155. Zbl 0922.04007, MR 1632503, 10.1016/s0020-0255(97)10070-6
Reference: [11] Daňková, M.: Generalized extensionality of fuzzy relations..Fuzzy Sets and Systems 148 (2004), 291-304. Zbl 1059.03057, MR 2100201, 10.1016/j.fss.2004.02.011
Reference: [12] Daňková, M.: Approximation of extensional fuzzy relations over a residuated lattice..Fuzzy Sets and Systems 161 (2010), 1973-1991. Zbl 1205.03036, MR 2639424, 10.1016/j.fss.2010.03.011
Reference: [13] Delgado, M., Vila, M. A., Voxman, W.: On a canonical representation of fuzzy numbers..Fuzzy Sets and Systems 1998, 125-135. Zbl 0916.04004, 10.1016/s0165-0114(96)00144-3
Reference: [14] Dubois, D., Prade, H.: Fuzzy numbers: an overview..In: Analysis of fuzzy information (J. Bezdek, ed.), vol. f. CRS, Boca Raton 1987, pp. 3-39. Zbl 0663.94028, MR 0910312
Reference: [15] Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications..Academic Press, New York 1980. Zbl 0444.94049, MR 0700429
Reference: [16] Dubois, D., Prade, H.: Fuzzy real algebra: some results..Fuzzy Sets and Systems 2 (1979), 327-348. Zbl 0412.03035, MR 0545836, 10.1016/0165-0114(79)90005-8
Reference: [17] Dubois, D., Prade, H.: Operations on fuzzy numbers..Int. J. Syst. Sci. 9 (1978), 613-626. Zbl 0383.94045, MR 0491199, 10.1080/00207727808941724
Reference: [18] Goetschel, R., Voxman, W.: Elementary fuzzy calculus..Fuzzy Sets and Systems 18 (1986), 31-43. Zbl 0626.26014, MR 0825618, 10.1016/0165-0114(86)90026-6
Reference: [19] Goetschel, R., Voxman, W.: Topological properties of fuzzy numbers..Fuzzy Sets and Systems 10 (1983), 87-99. Zbl 0521.54001, MR 0700437, 10.1016/s0165-0114(83)80107-9
Reference: [20] Guerra, M. L., Stefanini, L.: Approximate fuzzy arithmetic operations using monotonic interpolations..Fuzzy Sets and Systems 150 (2005), 5-33. Zbl 1062.03050, MR 2113512, 10.1016/j.fss.2004.06.007
Reference: [21] Hanss, M.: Applied Fuzzy Arithmetic: An Introduction with Engineering Applications..Springer-Verlag, Berlin 2005. Zbl 1085.03041
Reference: [22] Holčapek, M., Štěpnička, M.: Arithmetics of extensional fuzzy numbers - Part I: Introduction..In: Proc. FUZZ-IEEE 2012, pp. 1517-1524. 10.1109/fuzz-ieee.2012.6251274
Reference: [23] Holčapek, M., Štěpnička, M.: Arithmetics of extensional fuzzy numbers - Part II: Algebraic framework..In: Proc. FUZZ-IEEE 2012, pp. 1525-1532. 10.1109/fuzz-ieee.2012.6251275
Reference: [24] Holčapek, M., Wrublová, M., Štěpnička, M.: On isomorphism theorems for MI-groups..In: Proc. EUSFLAT 2013, pp. 764-771.
Reference: [25] Hong, D. H., Lee, S.: Some algebraic properties and a distance measure for interval-valued fuzzy numbers..Inform. Sci. 148 (2002), 1-10. Zbl 1019.03036, MR 1947110, 10.1016/s0020-0255(02)00265-7
Reference: [26] Hong, D. H., Moon, E. L., Kim, J. D.: A note on the core of fuzzy numbers..Appl. Math. Lett. 23 (2010), 282-285. Zbl 1185.26062, MR 2565191, 10.1016/j.aml.2009.09.026
Reference: [27] Josephy, M.: Composing functions of bounded variation..Proc. Amer. Math. Soc. 83 (1981), 354-356. Zbl 0475.26005, MR 0624930, 10.2307/2043527
Reference: [28] Kaufmann, A., Gupta, M. M.: Introduction to Fuzzy Arithmetic..Van Nostrand Reinhold, New York 1991. Zbl 0754.26012, MR 1132439
Reference: [29] Kosiński, W.: Calculation and reasoning with ordered fuzzy numbers..In: EUSFLAT/LFA Proc. (E. Monseny and P. Sobrevilla, eds.), 2005, pp. 412-417.
Reference: [30] Kosiński, W., Prokopowicz, P., Ślezak, D.: Calculus with fuzzy numbers..In: IMTCI 2004, LNAI 3490 (L. Bolc et all., eds.), Springer-Verlag, Berlin, Heidelberg 2005, pp. 21-28.
Reference: [31] Kosiński, W., Prokopowicz, P., Ślezak, D.: Ordered fuzzy numbers..Bull. Pol. Acad. Sci. Math. 51 (2003), 3, 327-339. Zbl 1102.03310, MR 2017009
Reference: [32] Kosiński, W.: On fuzzy number calculus..Int. J. Appl. Math. Comput. Sci. 16 (2006), 51-57. MR 2212158
Reference: [33] Kovács, M., Tran, L. H.: Algebraic structure of centered M-fuzzy numbers..Fuzzy Sets and Systems 39 (1991), 91-99. Zbl 0724.04006, MR 1089014, 10.1016/0165-0114(91)90068-2
Reference: [34] Lowen, R.: On $\left( \mathbb{R}\left( L\right) ,\oplus\right) $..Fuzzy Sets and Systems. 10 (1983), 203-209. MR 0705208, 10.1016/s0165-0114(83)80115-8
Reference: [35] Ma, M.: On embedding problems of fuzzy number spaces: Part 4..Fuzzy Sets and Systems 58 (1993), 185-193. MR 1239476, 10.1016/0165-0114(93)90494-3
Reference: [36] Ma, M., Friedman, M., Kandel, A.: A new fuzzy arithmetic..Fuzzy Sets and Systems 108 (1999), 83-90. Zbl 0937.03059, MR 1714662, 10.1016/s0165-0114(97)00310-2
Reference: [37] Makó, Z.: Real vector space of LR-fuzzy intervals with respect to the shape-preserving t-norm-based addition..Fuzzy Sets and Systems 200 (2012), 136-149. Zbl 1251.15002, MR 2927849, 10.1016/j.fss.2012.02.014
Reference: [38] Mareš, M.: Addition of fuzzy quantities: disjunction-conjunction approach..Kybernetika 25 (1989), 2, 104-116. Zbl 0679.90027, MR 0995953
Reference: [39] Mareš, M.: Algebra of fuzzy quantities..Int. J. General Systems 20 (1991), 59-65. Zbl 0739.90074, 10.1080/03081079108945014
Reference: [40] Mareš, M.: Multiplication of fuzzy quantities..Kybernetika 28 (1992), 5, 337-356. Zbl 0786.04006, MR 1197719
Reference: [41] Mareš, M.: Algebraic equivalences over fuzzy quantities..Kybernetika 29 (1993), 2, 122-132. Zbl 0788.04006, MR 1227746
Reference: [42] Mareš, M.: Computation over Fuzzy Quantities..CRC Press, Boca Raton 1994. Zbl 0859.94035, MR 1327525
Reference: [43] Mareš, M.: Brief note on distributivity of triangular fuzzy numbers..Kybernetika 31 (1995), 5, 451-457. Zbl 0856.04009, MR 1361306
Reference: [44] Mareš, M.: Equivalentions over fuzzy quantities..Tatra Mountains Math. Publ. 6 (1995), 117-121. Zbl 0849.04005, MR 1363989
Reference: [45] Mareš, M.: Fuzzy zero, algebraic equivalence: yes or no?.Kybernetika 32 (1996), 4, 343-351. Zbl 0884.04004, MR 1420127
Reference: [46] Mareš, M.: Weak arthmetics of fuzzy numbers..Fuzzy Sets and Systems 91 (1997), 143-153. MR 1480041, 10.1016/s0165-0114(97)00136-x
Reference: [47] Mesiar, R., Rybárik, J.: Pan-operations structure..Fuzzy Sets and Systems 74 (1995), 365-369. Zbl 0859.28010, MR 1351585, 10.1016/0165-0114(94)00314-w
Reference: [48] Maturo, A.: On some structures of fuzzy numbers..Iranian J. Fuzzy Syst. 6 (2009), 49-59. Zbl 1203.03084, MR 2604175
Reference: [49] Natanson, I. P.: Theory of Functions of a Real Variable, 1-2..F. Ungar Publ. 1955 - 1961 (translated from Russian: Soviet Academic Press, Moscow 1950). MR 0039790
Reference: [50] Qiu, D., Lu, C., Zhang, W., Lan, Y.: Algebraic properties and topological properties of the quotient space of fuzzy numbers based on Mareš equivalence relation..Fuzzy Sets and Systems 245 (2014), 63-82. MR 3195426
Reference: [51] Qiu, D., Zhang, W.: Symmetric fuzzy numbers and additive equivalence of fuzzy numbers..Soft Computing 17 (2013), 1471-1477. 10.1007/s00500-013-1000-3
Reference: [52] Royden, H. L.: Real Analysis..The Macmillan Co., New York, London 1969. Zbl 1191.26002, MR 1013117
Reference: [53] Stefanini, L., Sorini, L., Guerra, M. L.: Parametric representation of fuzzy numbers and application to fuzzy calculus..Fuzzy Sets and Systems 157 (2006), 2423-2455. Zbl 1109.26024, MR 2254174, 10.1016/j.fss.2006.02.002
Reference: [54] Stefanini, L.: A generalization of Hukuhara difference and division for interval and fuzzy arithmetic..Fuzzy Sets and Systems 151 (2010), 1564-1584. Zbl 1188.26019, MR 2608262, 10.1016/j.fss.2009.06.009
Reference: [55] Vrba, J.: A note on inverses in arithmetic with fuzzy numbers..Fuzzy Sets and Systems 50 (1992), 267-278. MR 1188297, 10.1016/0165-0114(92)90225-s
Reference: [56] Zhao, R., Govind, R.: Algebraic characteristics of extended fuzzy numbers..Inform. Sci. 54 (1991), 103-130. Zbl 0774.26015, MR 1079201, 10.1016/0020-0255(91)90047-x
.

Files

Files Size Format View
Kybernetika_51-2015-2_5.pdf 349.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo