[1] Borchers, W.: Zur Stabilität und Faktorisienrungsmethode für die Navier-Stokes Gleichungen inkompressibler viskoser Flüssigkeiten. Habilitationsschrift University of Paderborn (1992), German.
[2] Chen, Z.-M., Miyakawa, T.:
Decay properties of weak solutions to a perturbed Navier-Stokes system in {$\mathbb R^n$}. Adv. Math. Sci. Appl. 7 (1997), 741-770.
MR 1476275
[4] Cumsille, P., Tucsnak, M.:
Wellposedness for the Navier-Stokes flow in the exterior of a rotating obstacle. Math. Methods Appl. Sci. 29 (2006), 595-623.
DOI 10.1002/mma.702 |
MR 2205973
[6] Galdi, G. P.:
On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications. Handbook of Mathematical Fluid Dynamics 1 Elsevier Amsterdam (2002), 653-791 S. Friedlander et al.
MR 1942470 |
Zbl 1230.76016
[7] Galdi, G. P.:
An Introduction to the Mathematical Theory of the Navier-Stokes Equations I. Linearized Steady Problems. Springer Tracts in Natural Philosophy 38 Springer, New York (1994).
MR 1284205
[9] Galdi, G. P., Silvestre, A. L.:
Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques. Nonlinear Problems in Mathematical Physics and Related Topics I. Int. Math. Ser. (N. Y.) 1 Kluwer Academic/Plenum Publishers, New York (2002), 121-144 M. S. Birman et al.
DOI 10.1007/978-1-4615-0777-2_8 |
MR 1970608 |
Zbl 1046.35084
[10] Geissert, M., Heck, H., Hieber, M.:
$L^p$-theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle. J. Reine Angew. Math. 596 (2006), 45-62.
MR 2254804 |
Zbl 1102.76015
[13] Inoue, A., Wakimoto, M.:
On existence of solutions of the Navier-Stokes equation in a time dependent domain. J. Fac. Sci., Univ. Tokyo, Sect. I A 24 (1977), 303-319.
MR 0481649 |
Zbl 0381.35066
[14] Ladyzhenskaya, O. A.:
An initial-boundary value problem for the Navier-Stokes equations in domains with boundary changing in time. Semin. Math., V. A. Steklov Math. Inst., Leningrad 11 (1968), 35-46 translation from Zap. Nauchn. Semin. Leningrad. Otdel. Mat. Inst. Steklov. 11 (1968), 97-128 Russian.
MR 0416222
[15] Neustupa, J.:
Existence of a weak solution to the Navier-Stokes equation in a general time-varying domain by the Rothe method. Math. Methods Appl. Sci. 32 (2009), 653-683.
DOI 10.1002/mma.1059 |
MR 2504002 |
Zbl 1160.35494
[16] Neustupa, J., Penel, P.:
A weak solvability of the Navier-Stokes equation with Navier's boundary condition around a ball striking the wall. Advances in Mathematical Fluid Mechanics Springer, Berlin (2010), 385-407 R. Rannacher et al.
MR 2665044
[17] Neustupa, J., Penel, P.: A weak solution to the Navier-Stokes system with Navier's boundary condition in a time varying domain. Accepted to ``Recent Developments of Mathematical Fluid Mechanics'', Series: Advances in Math. Fluid Mech. Birkhäuser G. P. Galdi, J. G. Heywood, R. Rannacher.
[18] Serre, D.:
Free fall of a rigid body in an incompressible viscous fluid. Existence. Japan J. Appl. Math. 4 French (1987), 99-110.
MR 0899206