Title:
|
A note on normal generation and generation of groups (English) |
Author:
|
Thom, Andreas |
Language:
|
English |
Journal:
|
Communications in Mathematics |
ISSN:
|
1804-1388 |
Volume:
|
23 |
Issue:
|
1 |
Year:
|
2015 |
Pages:
|
1-11 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this note we study sets of normal generators of finitely presented residually $p$-finite groups. We show that if an infinite, finitely presented, residually $p$-finite group $G$ is normally generated by $g_1,\dots ,g_k$ with order $n_1,\dots ,n_k \in \{1,2,\dots \} \cup \{\infty \}$, then $$\beta _1^{(2)}(G) \leq k-1-\sum _{i=1}^{k} \frac 1{n_i}\,,$$ where $\beta _1^{(2)}(G)$ denotes the first $\ell ^2$-Betti number of $G$. We also show that any $k$-generated group with $\beta _1^{(2)}(G) \geq k-1-\varepsilon $ must have girth greater than or equal $1/\varepsilon $. (English) |
Keyword:
|
group rings |
Keyword:
|
$\ell ^2$-invariants |
Keyword:
|
residually $p$-finite groups |
Keyword:
|
normal generation |
MSC:
|
16S34 |
MSC:
|
46L10 |
MSC:
|
46L50 |
idZBL:
|
Zbl 1362.20026 |
idMR:
|
MR3394074 |
. |
Date available:
|
2015-08-25T13:54:26Z |
Last updated:
|
2018-01-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144353 |
. |
Reference:
|
[1] Aschenbrenner, M., Friedl, S.: 3-manifold groups are virtually residually $p$.225, 1058, 2013, American mathematical society, Zbl 1328.57002, MR 3100378 |
Reference:
|
[2] Atiyah, M. F.: Elliptic operators, discrete groups and von Neumann algebras.Astérisque, 32, 33, 1976, 43-72, Colloque ``Analyse et Topologie'' en l'Honneur de Henri Cartan (Orsay, 1974). Zbl 0323.58015, MR 0420729 |
Reference:
|
[3] Baumslag, G.: Residually finite one-relator groups.Bull. Amer. Math. Soc., 73, 1967, 618-620, Zbl 0153.34904, MR 0212078, 10.1090/S0002-9904-1967-11799-3 |
Reference:
|
[4] Cheeger, J., Gromov, M.: $L_2$-cohomology and group cohomology.Topology, 25, 2, 1986, 189-215, MR 0837621, 10.1016/0040-9383(86)90039-X |
Reference:
|
[5] Formanek, E.: A short proof of a theorem of Jennings.Proc. Amer. Math. Soc., 26, 1970, 405-407, Zbl 0223.20033, MR 0272895, 10.1090/S0002-9939-1970-0272895-7 |
Reference:
|
[6] Gruenberg, K.: Residual properties of infinite soluble groups.Proc. London Math. Soc. (3), 7, 1957, 29-62, Zbl 0077.02901, MR 0087652 |
Reference:
|
[7] Gruenberg, K.: The residual nilpotence of certain presentations of finite groups.Arch. Math., 13, 1962, 408-417, Zbl 0111.02804, MR 0159881, 10.1007/BF01650089 |
Reference:
|
[8] Jennings, S. A.: The group ring of a class of infinite nilpotent groups.Canad. J. Math., 7, 1955, 169-187, Zbl 0066.01302, MR 0068540, 10.4153/CJM-1955-022-5 |
Reference:
|
[9] Lackenby, M.: Covering spaces of 3-orbifolds.Duke Math. J., 136, 1, 2007, 181-203, Zbl 1109.57015, MR 2271299, 10.1215/S0012-7094-07-13616-0 |
Reference:
|
[10] Lück, W.: Dimension theory of arbitrary modules over finite von Neumann algebras and $L^2$-Betti numbers. II. Applications to Grothendieck groups, $L^2$-Euler characteristics and Burnside groups.J. Reine Angew. Math., 496, 1998, 213-236, Zbl 1001.55019, MR 1605818 |
Reference:
|
[11] Lück, W.: $L\sp 2$-invariants: theory and applications to geometry and $K$-theory.44, 2002, Springer-Verlag, Berlin, MR 1926649 |
Reference:
|
[12] Lück, W., Osin, D.: Approximating the first $L^2$-Betti number of residually finite groups.J. Topol. Anal., 3, 2, 2011, 153-160, Zbl 1243.20039, MR 2819192, 10.1142/S1793525311000532 |
Reference:
|
[13] Osin, D., Thom, A.: Normal generation and $\ell ^2$-Betti numbers of groups.Math. Ann., 355, 4, 2013, 1331-1347, Zbl 1286.20052, MR 3037017, 10.1007/s00208-012-0828-7 |
Reference:
|
[14] Peterson, J., Thom, A.: Group cocycles and the ring of affiliated operators.Invent. Math., 185, 3, 2011, 561-592, Zbl 1227.22003, MR 2827095, 10.1007/s00222-011-0310-2 |
Reference:
|
[15] Pichot, M.: Semi-continuity of the first $l^2$-Betti number on the space of finitely generated groups.Comment. Math. Helv., 81, 3, 2006, 643-652, MR 2250857, 10.4171/CMH/67 |
Reference:
|
[16] Platonov, V. P.: A certain problem for finitely generated groups.Dokl. Akad. Nauk USSR, 12, 1968, 492-494, Zbl 0228.20018, MR 0231897 |
. |