Previous |  Up |  Next

Article

Title: Stability, Boundedness and Existenceof Periodic Solutions to Certain Third Order Nonlinear Differential Equations (English)
Author: ADEMOLA, A. T.
Author: OGUNDIRAN, M. O.
Author: ARAWOMO, P. O.
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 54
Issue: 1
Year: 2015
Pages: 5-18
Summary lang: English
.
Category: math
.
Summary: In this paper, criteria are established for uniform stability, uniform ultimate boundedness and existence of periodic solutions for third order nonlinear ordinary differential equations. In the investigation Lyapunov’s second method is used by constructing a complete Lyapunov function to obtain our results. The results obtained in this investigation complement and extend many existing results in the literature. (English)
Keyword: Third order
Keyword: nonlinear differential equation
Keyword: uniform stability
Keyword: uniform ultimate boundedness
Keyword: periodic solutions
MSC: 34C25
MSC: 34D20
MSC: 34D40
MSC: 65L06
idZBL: Zbl 1356.34046
idMR: MR3468597
.
Date available: 2015-09-01T08:54:39Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/144362
.
Reference: [1] Ademola, A. T., Arawomo, P. O.: On the asymptotic behaviour of solutions of certain differential equations of the third order. Proyecciones Journal of Mathematics 33, 1 (2014), 111–132. Zbl 1302.34076, MR 3162791
Reference: [2] Ademola, A. T., Arawomo, P. O.: Generalization of some qualitative behaviour of solutions of third order nonlinear differential equations. Differential Equations and Control Processes N 1 (2012), 97–113. MR 2977146
Reference: [3] Ademola, A. T., Arawomo, P. O.: Asymptotic behaviour of solutions of third order nonlinear differential equations. Acta Univ. Sapientiae, Mathematica 3, 2 (2011), 197–211. Zbl 1260.34100, MR 2915835
Reference: [4] Ademola, A. T., Arawomo, P. O.: Boundedness and asymptotic behaviour of solutions of a nonlinear differential equation of the third order. Afr. Mat. 23 (2012), 261–271. Zbl 1266.34051, MR 2958973, 10.1007/s13370-011-0034-x
Reference: [5] Ademola, A. T., Arawomo, P. O.: Boundedness and stability of solutions of some nonlinear differential equations of the third-order. The Pacific Journal of Science and Technology 10, 2 (2009), 187–193. MR 2881138
Reference: [6] Ademola, A. T., Arawomo, P. O.: Stability and ultimate boundedness of solutions to certain third-order differential equations. Applied Mathematics E-Notes 10 (2010), 61–69. Zbl 1194.34103, MR 2606838
Reference: [7] Ademola, A. T., Arawomo, P. O.: Stability and uniform ultimate boundedness of solutions of a third-order differential equation. International Journal of Applied Mathematics 23, 1 (2010), 11–22. Zbl 1201.34054, MR 2643291
Reference: [8] Ademola, A. T., Arawomo, P. O.: Stability and uniform ultimate boundedness of solutions of some third order differential equations. Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 27 (2011), 51–59. Zbl 1240.34259, MR 2813591
Reference: [9] Ademola, A. T., Arawomo, P. O.: Stability, boundedness and asymptotic behaviour of solutions of certain nonlinear differential equations of the third order. Kragujevac J. Math. 35, 3 (2011), 431–445. Zbl 1265.34191, MR 2881138
Reference: [10] Ademola, A. T., Ogundiran, M. O., Arawomo, P. O., Adesina, O. A.: Boundedness results for a certain third-order nonlinear differential equations. Appl. Math. Comput. 216 (2010), 3044–3049. MR 2653118, 10.1016/j.amc.2010.04.022
Reference: [11] Afuwape, A. U., Adesina, O. A.: On the bounds for mean-values of solutions to certain third-order nonlinear differential equations. Fasciculi Mathematici 36 (2005), 5–14. Zbl 1127.34019, MR 2223637
Reference: [12] Andres, J.: Boundedness results for solutions of the equation $\dddot{x}+a\ddot{x}+g(x)\dot{x}+h(x)=p(t)$ without the hypothesis $h(x)x\ge 0$ for $|x|>R$. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 80, 8 (1986), 533–539. MR 0976947
Reference: [13] Antoisewicz, H. A.: On nonlinear differential equations of the second order with integrable forcing term. J. London Math. Soc. 30 (1955), 64–67. 10.1112/jlms/s1-30.1.64
Reference: [14] Babaev, E. V., Hefferlin, R.: Concept of chemical periodicity: from Mendeleev Table to Molecular Hyper-periodicity patterns. In: Research Studies Press, London, 1996, 24–81.
Reference: [15] Bereketoǧlu, H., Györi, I.: On the boundedness of solutions of a third-order nonlinear differential equation. Dynam. Systems Appl. 6, 2 (1997), 263–270. MR 1461442
Reference: [16] Callahan, J., Cox, D., Hoffman, K., O’Shea, D., Pollatsek, H., Senechal, L., L.: Calculus in Context. The Five College Calculus Project, Five Colleges, 2008.
Reference: [17] Chukwu, E. N.: On boundedness of solutions of third order differential equations. Ann. Mat. Pura. Appl. 104, 4 (1975), 123–149. MR 0377180, 10.1007/BF02417013
Reference: [18] Ezeilo, J. O. C.: A note on a boundedness theorem for some third-order differential equations. J. London Math. Soc. 36 (1961), 439–444. Zbl 0104.06501, MR 0136820, 10.1112/jlms/s1-36.1.439
Reference: [19] Ezeilo, J. O. C.: An elementary proof of a boundedness theorem for a certain third-order differential equation. J. London Math. Soc. 38 (1963), 11–16. Zbl 0116.06902, MR 0166450, 10.1112/jlms/s1-38.1.11
Reference: [20] Ezeilo, J. O. C.: A boundedness theorem for a certain third-order differential equation. Proc. London Math. Soc. 13, 3 (1963), 99–124. Zbl 0116.06902, MR 0142850
Reference: [21] Hara, T.: On the uniform ultimate boundedness of solutions of certain third-order differential equations. J. Math. Anal. Appl. 80, 2 (1981), 533–544. MR 0614848, 10.1016/0022-247X(81)90122-0
Reference: [22] Mehri, B., Niksirat, M. A.: On the existence of periodic solutions for certain differential equations. J. Comp. & Appl. Math. 174 (2005), 239–249. Zbl 1069.34064, MR 2106439, 10.1016/j.cam.2004.04.011
Reference: [23] Mehri, B., Shadman, D.: Boundedness of solutions of certain third-order differential equation. Math. Inequal. Appl., 4 (1999), 545–549. Zbl 0943.34022, MR 1717047
Reference: [24] Mehri, B., Shadman, D.: On the existence of periodic solutions of a certain class of second order nonlinear differential equation. Math. Inequal. Appl. 1, 3 (1998), 431–436. MR 1629412
Reference: [25] Mehri, B., Shadman, D.: Periodic solutions of a certain non-linear third order differential equation. Scientia Iranica 11 (2004), 181–184. MR 2106566
Reference: [26] Mehri, B.: Periodic solution for certain non linear third-order differential equation. Indian J. Pure Appl. Math. 21, 3 (1990), 203–210. Zbl 0708.34030, MR 1044260
Reference: [27] Minhós, F.: Periodic solutions for a third order differential equation under conditions on the potential. Portugaliae Mathematica 55, 4 (1998), 475–484. Zbl 0923.34045, MR 1672255
Reference: [28] LaSalle, J., Lefschetz, S.: Stability by Liapunov’s direct method with applications. Academic Press, New York–London, 1961. MR 0132876
Reference: [29] Ogundare, B. S.: On the boundedness and stability results for the solutions of certain third-order nonlinear differential equations. Kragujevac J. Math. 29 (2006), 37–48. MR 2288487
Reference: [30] Omeike, M. O.: New result in the ultimate boundedness of solutions of a third-order nonlinear ordinary differential equation. J. Inequal. Pure and Appl. Math. 9, 1 (2008), Art. 15, 1–8. Zbl 1173.34321, MR 2391282
Reference: [31] Reissig, R., Sansone, G., Conti, R.: Nonlinear Differential Equations of Higher Order. Noordhoff International Publishing, Leyeden, 1974. MR 0344556
Reference: [32] Rouche, N., Habets, N., Laloy, M.: Stability Theory by Liapunov’s Direct Method. Applied Mathematical Sciences 22, Spriger-Verlag, New York–Heidelberg–Berlin, 1977. Zbl 0364.34022, MR 0450715
Reference: [33] Shadman, D., Mehri, B.: On the periodic solutions of certain nonlinear third order differential equations. Z Angew. Math. Mech. 75, 2 (1995), 164–166. Zbl 0828.34029, MR 1319334, 10.1002/zamm.19950750218
Reference: [34] Swick, K. E.: On the boundedness and the stability of solutions for some non-autonomous differential equations of the third order. J. London Math. Soc. 44 (1969), 347–359. MR 0236482, 10.1112/jlms/s1-44.1.347
Reference: [35] Tejumola, H. O.: A note on the boundedness of solutions of some nonlinear differential equations of the third-order. Ghana J. of Science 11, 2 (1970), 117–118.
Reference: [36] Tejumola, H. O.: A note on the boundedness and the stability of solutions of certain third-order differential equations. Ann. Math. Pura. Appl. 92 (1972), 65–75. Zbl 0242.34046, MR 0318615, 10.1007/BF02417936
Reference: [37] Tunç, C., Çmar, I.: On the existence of periodic solutions to nonlinear differential equations of second order. Differ. Uravn. Protsessy Upr. (Differential equations and control processes), 3 (2008), 1–6. MR 2515107
Reference: [38] Tunç, C.: Boundedness of solutions of a third-order nonlinear differential equation. J. Inequal. Pure and Appl. Math. 6, 1 (2005), 1–6. Zbl 1082.34514, MR 2122950
Reference: [39] Tunç, C.: On existence of periodic solutions to certain nonlinear third order differential equations. Proyecciones Journal of Mathematics 28, 2 (2009), 125–132. MR 2529760, 10.4067/S0716-09172009000200002
Reference: [40] Tunç, C.: Some new results on the boundedness of solutions of a certain nonlinear differential equation of third-order. International J. of Nonlinear Science 7, 2 (2009), 246–256. Zbl 1371.34045, MR 2496738
Reference: [41] Yoshizawa, T.: Liapunov’s function and boundedness of solutions. Funkcialaj Ekvacioj 2 (1958), 71–103. MR 0114981
Reference: [42] Yoshizawa, T.: Stability Theory by Liapunov’s Second Method. The Mathematical Society of Japan, 1966. MR 0208086
Reference: [43] Yoshizawa, T.: Stability Theory and Existence of Periodic Solutions and Almost Periodic Solutions. Spriger-Verlag, New York–Heidelberg–Berlin, 1975. MR 0466797
.

Files

Files Size Format View
ActaOlom_54-2015-1_1.pdf 2.023Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo