Previous |  Up |  Next

Article

Title: Reticulation of a 0-distributive Lattice (English)
Author: Pawar, Y. S.
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 54
Issue: 1
Year: 2015
Pages: 121-128
Summary lang: English
.
Category: math
.
Summary: A congruence relation $\theta $ on a 0-distributive lattice is defined such that the quotient lattice $L/\theta $ is a distributive lattice and the prime spectrum of $L$ and of $L/\theta $ are homeomorphic. Also it is proved that the minimal prime spectrum (maximal spectrum) of $L$ is homeomorphic with the minimal prime spectrum (maximal spectrum) of $L/\theta $. (English)
Keyword: 0-distributive lattice
Keyword: ideal
Keyword: prime ideal
Keyword: congruence relation
Keyword: prime spectrum
Keyword: minimal prime spectrum
Keyword: maximal spectrum
MSC: 06D99
idZBL: Zbl 1347.06015
idMR: MR3468605
.
Date available: 2015-09-01T09:04:54Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/144372
.
Reference: [1] Belluce, L. P.: Semisimple Algebras of Infinite Valued Logic and Bold Fuzzy Set Theory. Can. J. Math. 38, 6 (1986), 1356–1379. Zbl 0625.03009, MR 0873417, 10.4153/CJM-1986-069-0
Reference: [2] Belluce, L. P.: Spectral Spaces and Non-commutative Rings. Comm. Algebra 19 (1991), 1855–1865. Zbl 0728.16002, MR 1121110, 10.1080/00927879108824234
Reference: [3] Balasubramani, P.: Stone Topology of The Set of Prime Ideals of a 0-distributive Lattice. Indian J. Pure Appl. Math. 35 (2004), 149–158. MR 2040729
Reference: [4] Dan, C. T.: Reticulation in Heyting Algebra. Annals of University of Craiova, Math. Comp. Sci. Ser. 30, 2 (2003), 66–70. MR 2064622
Reference: [5] Muresan, C.: The Reticulation of a Residuated Lattice. Bull. Math. Soc. Sci. Math. Roumanie 51 (99), 1 (2008), 47–65. Zbl 1164.06011, MR 2396283
Reference: [6] Grätzer, G.: Lattice Theory: First Concepts and Distributive Lattices. W. H. Freeman, San Francisco, 1971. MR 0321817
Reference: [7] Kelley, J. L.: General Topology. Van Nostrand, New York, 1969. MR 0070144
Reference: [8] Leustean, L.: The Prime and Maximal Spectra and The Reticulation of BL-algebras. Central European Journal of Mathematics 1, 3 (2003), 382–397. Zbl 1039.03052, MR 1992899, 10.2478/BF02475217
Reference: [9] Pawar, Y. S.: 0-1 distributive lattices. Indian J. Pure Appl. Math. 24 (1993), 173–179. Zbl 0765.06015, MR 1210389
Reference: [10] Simmons, H.: Reticulated Rings. J. Algebra 66 (1980), 169–192. Zbl 0462.13002, MR 0591251, 10.1016/0021-8693(80)90118-0
Reference: [11] Varlet, J.: A generalization of the notion of pseudo-complementedness. Bull. Soc. Liege 37 (1968), 149–158. Zbl 0162.03501, MR 0228390
Reference: [12] Varlet, J.: On The Characterizations of Stone Lattices. Acta Sci. Math. (Szeged) 27 (1966), 81–84. MR 0194370
.

Files

Files Size Format View
ActaOlom_54-2015-1_9.pdf 367.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo