Title:
|
Reticulation of a 0-distributive Lattice (English) |
Author:
|
Pawar, Y. S. |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
54 |
Issue:
|
1 |
Year:
|
2015 |
Pages:
|
121-128 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A congruence relation $\theta $ on a 0-distributive lattice is defined such that the quotient lattice $L/\theta $ is a distributive lattice and the prime spectrum of $L$ and of $L/\theta $ are homeomorphic. Also it is proved that the minimal prime spectrum (maximal spectrum) of $L$ is homeomorphic with the minimal prime spectrum (maximal spectrum) of $L/\theta $. (English) |
Keyword:
|
0-distributive lattice |
Keyword:
|
ideal |
Keyword:
|
prime ideal |
Keyword:
|
congruence relation |
Keyword:
|
prime spectrum |
Keyword:
|
minimal prime spectrum |
Keyword:
|
maximal spectrum |
MSC:
|
06D99 |
idZBL:
|
Zbl 1347.06015 |
idMR:
|
MR3468605 |
. |
Date available:
|
2015-09-01T09:04:54Z |
Last updated:
|
2018-01-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144372 |
. |
Reference:
|
[1] Belluce, L. P.: Semisimple Algebras of Infinite Valued Logic and Bold Fuzzy Set Theory. Can. J. Math. 38, 6 (1986), 1356–1379. Zbl 0625.03009, MR 0873417, 10.4153/CJM-1986-069-0 |
Reference:
|
[2] Belluce, L. P.: Spectral Spaces and Non-commutative Rings. Comm. Algebra 19 (1991), 1855–1865. Zbl 0728.16002, MR 1121110, 10.1080/00927879108824234 |
Reference:
|
[3] Balasubramani, P.: Stone Topology of The Set of Prime Ideals of a 0-distributive Lattice. Indian J. Pure Appl. Math. 35 (2004), 149–158. MR 2040729 |
Reference:
|
[4] Dan, C. T.: Reticulation in Heyting Algebra. Annals of University of Craiova, Math. Comp. Sci. Ser. 30, 2 (2003), 66–70. MR 2064622 |
Reference:
|
[5] Muresan, C.: The Reticulation of a Residuated Lattice. Bull. Math. Soc. Sci. Math. Roumanie 51 (99), 1 (2008), 47–65. Zbl 1164.06011, MR 2396283 |
Reference:
|
[6] Grätzer, G.: Lattice Theory: First Concepts and Distributive Lattices. W. H. Freeman, San Francisco, 1971. MR 0321817 |
Reference:
|
[7] Kelley, J. L.: General Topology. Van Nostrand, New York, 1969. MR 0070144 |
Reference:
|
[8] Leustean, L.: The Prime and Maximal Spectra and The Reticulation of BL-algebras. Central European Journal of Mathematics 1, 3 (2003), 382–397. Zbl 1039.03052, MR 1992899, 10.2478/BF02475217 |
Reference:
|
[9] Pawar, Y. S.: 0-1 distributive lattices. Indian J. Pure Appl. Math. 24 (1993), 173–179. Zbl 0765.06015, MR 1210389 |
Reference:
|
[10] Simmons, H.: Reticulated Rings. J. Algebra 66 (1980), 169–192. Zbl 0462.13002, MR 0591251, 10.1016/0021-8693(80)90118-0 |
Reference:
|
[11] Varlet, J.: A generalization of the notion of pseudo-complementedness. Bull. Soc. Liege 37 (1968), 149–158. Zbl 0162.03501, MR 0228390 |
Reference:
|
[12] Varlet, J.: On The Characterizations of Stone Lattices. Acta Sci. Math. (Szeged) 27 (1966), 81–84. MR 0194370 |
. |