Previous |  Up |  Next

Article

Title: Divergence of FEM: Babuška-Aziz triangulations revisited (English)
Author: Oswald, Peter
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 60
Issue: 5
Year: 2015
Pages: 473-484
Summary lang: English
.
Category: math
.
Summary: By re-examining the arguments and counterexamples in I. Babuška, A. K. Aziz (1976) concerning the well-known maximum angle condition, we study the convergence behavior of the linear finite element method (FEM) on a family of distorted triangulations of the unit square originally introduced by H. Schwarz in 1880. For a Poisson problem with polynomial solution, we demonstrate arbitrarily slow convergence as well as failure of convergence if the distortion of the triangulations grows sufficiently fast. This seems to be the first formal proof of divergence of the FEM for a standard elliptic problem with smooth solution. (English)
Keyword: finite elements
Keyword: error bounds
Keyword: divergence
Keyword: maximum angle condition
Keyword: triangulation
MSC: 65N12
MSC: 65N15
MSC: 65N30
idZBL: Zbl 06486921
idMR: MR3396476
DOI: 10.1007/s10492-015-0107-5
.
Date available: 2015-09-03T10:34:12Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144387
.
Reference: [1] Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications.Advances in Numerical Mathematics Teubner, Leipzig; Technische Univ., Chemnitz (1999). Zbl 0934.65121, MR 1716824
Reference: [2] Babuška, I., Aziz, A. K.: On the angle condition in the finite element method.SIAM J. Numer. Anal. 13 (1976), 214-226. Zbl 0324.65046, MR 0455462, 10.1137/0713021
Reference: [3] Bank, R. E., Yserentant, H.: A note on interpolation, best approximation, and the saturation property.Numer. Math. (2014), doi:10.1007/s00211-014-0687-0. MR 3383332, 10.1007/s00211-014-0687-0
Reference: [4] Hannukainen, A., Juntunen, M., Huhtala, A.: Finite Element Methods I, course notes A.Mat-1.3650, Univ. Helsinki, 2015..
Reference: [5] Hannukainen, A., Korotov, S., Křížek, M.: The maximum angle condition is not necessary for convergence of the finite element method.Numer. Math. 120 (2012), 79-88. Zbl 1255.65196, MR 2885598, 10.1007/s00211-011-0403-2
Reference: [6] Jamet, P.: Estimations d'erreur pour des éléments finis droits presque dégénérés.Rev. Franc. Automat. Inform. Rech. Operat. {\it 10}, Analyse numer., R-1 (1976), 43-60. MR 0455282
Reference: [7] Kobayashi, K., Tsuchiya, T.: A Babuška-Aziz type proof of the circumradius condition.Japan J. Ind. Appl. Math. 31 (2014), 193-210. Zbl 1295.65011, MR 3167084, 10.1007/s13160-013-0128-y
Reference: [8] Křížek, M.: On semiregular families of triangulations and linear interpolation.Appl. Math., Praha 36 (1991), 223-232. Zbl 0728.41003, MR 1109126
Reference: [9] Ludwig, L.: A discussion on the maximum angle condition/counterexample for the convergence of the FEM.Manuscript, TU Dresden, 2011.
Reference: [10] Schwarz, H. A.: Sur une définition erroneé de l'aire d'une surface courbe.Gesammelte Mathematische Abhandlungen, vol. 2 Springer, Berlin (1890), 309-311, 369-370.
.

Files

Files Size Format View
AplMat_60-2015-5_2.pdf 261.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo