Previous |  Up |  Next

Article

Keywords:
stochastic Galerkin method; a posteriori error estimate; strengthened Cauchy-Bunyakowski-Schwarz constant; adaptive refinement
Summary:
We introduce a new tool for obtaining efficient a posteriori estimates of errors of approximate solutions of differential equations the data of which depend linearly on random parameters. The solution method is the stochastic Galerkin method. Polynomial chaos expansion of the solution is considered and the approximation spaces are tensor products of univariate polynomials in random variables and of finite element basis functions. We derive a uniform upper bound to the strengthened Cauchy-Bunyakowski-Schwarz constant for a certain hierarchical decomposition of these spaces. Based on this, an adaptive algorithm is proposed. A simple numerical example illustrates the efficiency of the algorithm. Only the uniform distribution of random variables is considered in this paper, but the results obtained can be modified to any other type of random variables.
References:
[1] Ainsworth, M., Oden, J. T.: A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts Wiley, Chichester (2000). MR 1885308 | Zbl 1008.65076
[2] Axelsson, O.: Iterative Solution Methods. Cambridge Univ. Press, Cambridge (1994). MR 1276069 | Zbl 0813.15021
[3] Axelsson, O., Blaheta, R., Neytcheva, M.: Preconditioning of boundary value problems using elementwise Schur complements. SIAM J. Matrix Anal. Appl. 31 (2009), 767-789. DOI 10.1137/070679673 | MR 2530276 | Zbl 1194.65047
[4] Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Rev. 52 (2010), 317-355. DOI 10.1137/100786356 | MR 2646806 | Zbl 1226.65004
[5] Babuška, I., Tempone, R., Zouraris, G. E.: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42 (2004), 800-825. DOI 10.1137/S0036142902418680 | MR 2084236 | Zbl 1080.65003
[6] Bank, R. E., Dupont, T. F., Yserentant, H.: The hierarchical basis multigrid method. Numer. Math. 52 (1988), 427-458. DOI 10.1007/BF01462238 | MR 0932709 | Zbl 0645.65074
[7] Bespalov, A., Powell, C. E., Silvester, D.: A priori error analysis of stochastic Galerkin mixed approximations of elliptic PDEs with random data. SIAM J. Numer. Anal. 50 (2012), 2039-2063. DOI 10.1137/110854898 | MR 3022209 | Zbl 1253.35228
[8] Bosq, D.: Linear Processes in Function Spaces. Theory and Applications. Lecture Notes in Statistics 149 Springer, New York (2000). DOI 10.1007/978-1-4612-1154-9_8 | MR 1783138 | Zbl 0962.60004
[9] Bryant, C. M., Prudhomme, S., Wildey, T.: A posteriori error control for partial differential equations with random data. ICES Report 13-08, 2013, https://www.ices.utexas.edu/media/reports/2013/1308.pdf
[10] Butler, T., Constantine, P., Wildey, T.: A posteriori error analysis of parameterized linear systems using spectral methods. SIAM J. Matrix Anal. Appl. 33 (2012), 195-209. DOI 10.1137/110840522 | MR 2902678 | Zbl 1248.65021
[11] Deb, M. K., Babuška, I. M., Oden, J. T.: Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput. Methods Appl. Mech. Eng. 190 (2001), 6359-6372. DOI 10.1016/S0045-7825(01)00237-7 | MR 1870425 | Zbl 1075.65006
[12] Eigel, M., Gittelson, C. J., Schwab, C., Zander, E.: A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes. Preprint No. 1911. Weierstrass Institute für Angewadte Analysis und Stochastic, Berlin, 2013.
[13] Eigel, M., Gittelson, C. J., Schwab, C., Zander, E.: Adaptive stochastic Galerkin FEM. Comput. Methods Appl. Mech. Eng. 270 (2014), 247-269. DOI 10.1016/j.cma.2013.11.015 | MR 3154028 | Zbl 1296.65157
[14] Ernst, O. G., Ullmann, E.: Stochastic Galerkin matrices. SIAM J. Matrix Anal. Appl. 31 (2010), 1848-1872. DOI 10.1137/080742282 | MR 2644740 | Zbl 1205.65021
[15] Frauenfelder, P., Schwab, C., Todor, R. A.: Finite elements for elliptic problems with stochastic coefficients. Comput. Methods Appl. Mech. Eng. 194 (2005), 205-228. DOI 10.1016/j.cma.2004.04.008 | MR 2105161 | Zbl 1143.65392
[16] Maître, O. P. Le, Knio, O. M., Najm, H. N., Ghanem, R. G.: Uncertainty propagation using Wiener-Haar expansions. J. Comput. Phys. 197 (2004), 28-57. DOI 10.1016/j.jcp.2003.11.033 | MR 2061240 | Zbl 1052.65114
[17] Powell, C. E., Elman, H. C.: Block-diagonal preconditioning for spectral stochastic finite-element systems. IMA J. Numer. Anal. 29 (2009), 350-375. DOI 10.1093/imanum/drn014 | MR 2491431 | Zbl 1169.65007
[18] Pultarová, I.: Hierarchical preconditioning for the stochastic Galerkin method: upper bounds to the strengthened CBS constants. Submitted. Available in ERC-CZ project LL1202 database, http://more.karlin.mff.cuni.cz
[19] Ralston, A.: A First Course in Numerical Analysis. McGraw-Hill Book, New York (1965). MR 0191070 | Zbl 0139.31603
[20] Sousedík, B., Ghanem, R. G.: Truncated hierarchical preconditioning for the stochastic Galerkin FEM. Int. J. Uncertain. Quantif. 4 (2014), 333-348. DOI 10.1615/Int.J.UncertaintyQuantification.2014007353 | MR 3260480
[21] Sousedík, B., Ghanem, R. G., Phipps, E. T.: Hierarchical Schur complement preconditioner for the stochastic Galerkin finite element methods. Numer. Linear Algebra Appl. 21 (2014), 136-151. DOI 10.1002/nla.1869 | MR 3150614
[22] Ullmann, E., Elman, H. C., Ernst, O. G.: Efficient iterative solvers for stochastic Galerkin discretizations of log-transformed random diffusion problems. SIAM J. Sci. Comput. 34 (2012), A659--A682. DOI 10.1137/110836675 | MR 2914299 | Zbl 1251.35200
[23] Xiu, D.: Numerical Methods for Stochastic Computations. A Spectral Method Approach. Princeton University Press, Princeton (2010). MR 2723020 | Zbl 1210.65002
Partner of
EuDML logo