[1] Ainsworth, M., Oden, J. T.:
A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts Wiley, Chichester (2000).
MR 1885308 |
Zbl 1008.65076
[7] Bespalov, A., Powell, C. E., Silvester, D.:
A priori error analysis of stochastic Galerkin mixed approximations of elliptic PDEs with random data. SIAM J. Numer. Anal. 50 (2012), 2039-2063.
DOI 10.1137/110854898 |
MR 3022209 |
Zbl 1253.35228
[10] Butler, T., Constantine, P., Wildey, T.:
A posteriori error analysis of parameterized linear systems using spectral methods. SIAM J. Matrix Anal. Appl. 33 (2012), 195-209.
DOI 10.1137/110840522 |
MR 2902678 |
Zbl 1248.65021
[12] Eigel, M., Gittelson, C. J., Schwab, C., Zander, E.: A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes. Preprint No. 1911. Weierstrass Institute für Angewadte Analysis und Stochastic, Berlin, 2013.
[18] Pultarová, I.:
Hierarchical preconditioning for the stochastic Galerkin method: upper bounds to the strengthened CBS constants. Submitted. Available in ERC-CZ project LL1202 database,
http://more.karlin.mff.cuni.cz
[21] Sousedík, B., Ghanem, R. G., Phipps, E. T.:
Hierarchical Schur complement preconditioner for the stochastic Galerkin finite element methods. Numer. Linear Algebra Appl. 21 (2014), 136-151.
DOI 10.1002/nla.1869 |
MR 3150614
[22] Ullmann, E., Elman, H. C., Ernst, O. G.:
Efficient iterative solvers for stochastic Galerkin discretizations of log-transformed random diffusion problems. SIAM J. Sci. Comput. 34 (2012), A659--A682.
DOI 10.1137/110836675 |
MR 2914299 |
Zbl 1251.35200
[23] Xiu, D.:
Numerical Methods for Stochastic Computations. A Spectral Method Approach. Princeton University Press, Princeton (2010).
MR 2723020 |
Zbl 1210.65002