Title:
|
Self-diclique circulant digraphs (English) |
Author:
|
Frick, Marietjie |
Author:
|
Llano, Bernardo |
Author:
|
Zuazua, Rita |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
140 |
Issue:
|
3 |
Year:
|
2015 |
Pages:
|
361-367 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study a particular digraph dynamical system, the so called digraph diclique operator. Dicliques have frequently appeared in the literature the last years in connection with the construction and analysis of different types of networks, for instance biochemical, neural, ecological, sociological and computer networks among others. Let $D=(V,A)$ be a reflexive digraph (or network). Consider $X$ and $Y$ (not necessarily disjoint) nonempty subsets of vertices (or nodes) of $D$. A disimplex $K(X,Y)$ of $D$ is the subdigraph of $D$ with vertex set $X\cup Y$ and arc set $\{(x,y)\colon x\in X,\ y\in Y\}$ (when $X\cap Y\neq \varnothing $, loops are not considered). A disimplex $K(X,Y)$ of $D$ is called a diclique of $D$ if $K(X,Y)$ is not a proper subdigraph of any other disimplex of $D$. The diclique digraph $\overrightarrow {k}(D)$ of a digraph $D$ is the digraph whose vertex set is the set of all dicliques of $D$ and $( K(X,Y),K(X',Y'))$ is an arc of $\overrightarrow {k}(D)$ if and only if $Y\cap X'\neq \varnothing $. We say that a digraph $D$ is self-diclique if $\overrightarrow {k}(D)$ is isomorphic to $D$. In this paper, we provide a characterization of the self-diclique circulant digraphs and an infinite family of non-circulant self-diclique digraphs. (English) |
Keyword:
|
circulant digraph |
Keyword:
|
diclique |
Keyword:
|
diclique operator |
Keyword:
|
self-diclique digraph |
Keyword:
|
graph dynamics |
MSC:
|
05C20 |
MSC:
|
68R10 |
idZBL:
|
Zbl 06486945 |
idMR:
|
MR3397263 |
DOI:
|
10.21136/MB.2015.144401 |
. |
Date available:
|
2015-09-03T10:59:18Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144401 |
. |
Reference:
|
[1] Bang-Jensen, J., Gutin, G. Z.: Digraphs: Theory, Algorithms and Applications.Springer Monographs in Mathematics Springer, London (2009). Zbl 1170.05002, MR 2472389 |
Reference:
|
[2] Bermond, J.-C., Comellas, F., Hsu, D. F.: Distributed loop computer networks: A survey.J. Parallel Distrib. Comput. 24 (1995), 2-10. 10.1006/jpdc.1995.1002 |
Reference:
|
[3] Figueroa, A. P., Llano, B.: An infinite family of self-diclique digraphs.Appl. Math. Lett. 23 (2010), 630-632. Zbl 1214.05041, MR 2602423, 10.1016/j.aml.2010.01.026 |
Reference:
|
[4] Greenberg, H. J., Lundgren, J. R., Maybee, J. S.: Extensions of graph inversion to support an artificially intelligent modeling enviroment.Ann. Oper. Res. 21 (1989), 127-142. 10.1007/BF02022096 |
Reference:
|
[5] Haralick, R. M.: The diclique representation and decomposition of binary relations.J. Assoc. Comput. Mach. 21 (1974), 356-366. Zbl 0293.94020, MR 0472598, 10.1145/321832.321834 |
Reference:
|
[6] Palla, G., Farkas, I. J., Pollner, P., Derényi, I., Vicsek, T.: Directed network modules.New J. Phys. 9 (2007), Article No. 186, 14 pages. 10.1088/1367-2630/9/6/186 |
Reference:
|
[7] Prisner, E.: A Journey through intersection graph county.http://eprisner.de/Journey/Rahmen.html (1999). |
Reference:
|
[8] Prisner, E.: Graph Dynamics.Pitman Research Notes in Mathematics Series 338 Longman Group, Harlow (1995). Zbl 0848.05001, MR 1379114 |
Reference:
|
[9] Zelinka, B.: On a problem of E. Prisner concerning the biclique operator.Math. Bohem. 127 (2002), 371-373. Zbl 1003.05048, MR 1931321 |
. |