Previous |  Up |  Next

Article

Title: Self-diclique circulant digraphs (English)
Author: Frick, Marietjie
Author: Llano, Bernardo
Author: Zuazua, Rita
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 140
Issue: 3
Year: 2015
Pages: 361-367
Summary lang: English
.
Category: math
.
Summary: We study a particular digraph dynamical system, the so called digraph diclique operator. Dicliques have frequently appeared in the literature the last years in connection with the construction and analysis of different types of networks, for instance biochemical, neural, ecological, sociological and computer networks among others. Let $D=(V,A)$ be a reflexive digraph (or network). Consider $X$ and $Y$ (not necessarily disjoint) nonempty subsets of vertices (or nodes) of $D$. A disimplex $K(X,Y)$ of $D$ is the subdigraph of $D$ with vertex set $X\cup Y$ and arc set $\{(x,y)\colon x\in X,\ y\in Y\}$ (when $X\cap Y\neq \varnothing $, loops are not considered). A disimplex $K(X,Y)$ of $D$ is called a diclique of $D$ if $K(X,Y)$ is not a proper subdigraph of any other disimplex of $D$. The diclique digraph $\overrightarrow {k}(D)$ of a digraph $D$ is the digraph whose vertex set is the set of all dicliques of $D$ and $( K(X,Y),K(X',Y'))$ is an arc of $\overrightarrow {k}(D)$ if and only if $Y\cap X'\neq \varnothing $. We say that a digraph $D$ is self-diclique if $\overrightarrow {k}(D)$ is isomorphic to $D$. In this paper, we provide a characterization of the self-diclique circulant digraphs and an infinite family of non-circulant self-diclique digraphs. (English)
Keyword: circulant digraph
Keyword: diclique
Keyword: diclique operator
Keyword: self-diclique digraph
Keyword: graph dynamics
MSC: 05C20
MSC: 68R10
idZBL: Zbl 06486945
idMR: MR3397263
DOI: 10.21136/MB.2015.144401
.
Date available: 2015-09-03T10:59:18Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144401
.
Reference: [1] Bang-Jensen, J., Gutin, G. Z.: Digraphs: Theory, Algorithms and Applications.Springer Monographs in Mathematics Springer, London (2009). Zbl 1170.05002, MR 2472389
Reference: [2] Bermond, J.-C., Comellas, F., Hsu, D. F.: Distributed loop computer networks: A survey.J. Parallel Distrib. Comput. 24 (1995), 2-10. 10.1006/jpdc.1995.1002
Reference: [3] Figueroa, A. P., Llano, B.: An infinite family of self-diclique digraphs.Appl. Math. Lett. 23 (2010), 630-632. Zbl 1214.05041, MR 2602423, 10.1016/j.aml.2010.01.026
Reference: [4] Greenberg, H. J., Lundgren, J. R., Maybee, J. S.: Extensions of graph inversion to support an artificially intelligent modeling enviroment.Ann. Oper. Res. 21 (1989), 127-142. 10.1007/BF02022096
Reference: [5] Haralick, R. M.: The diclique representation and decomposition of binary relations.J. Assoc. Comput. Mach. 21 (1974), 356-366. Zbl 0293.94020, MR 0472598, 10.1145/321832.321834
Reference: [6] Palla, G., Farkas, I. J., Pollner, P., Derényi, I., Vicsek, T.: Directed network modules.New J. Phys. 9 (2007), Article No. 186, 14 pages. 10.1088/1367-2630/9/6/186
Reference: [7] Prisner, E.: A Journey through intersection graph county.http://eprisner.de/Journey/Rahmen.html (1999).
Reference: [8] Prisner, E.: Graph Dynamics.Pitman Research Notes in Mathematics Series 338 Longman Group, Harlow (1995). Zbl 0848.05001, MR 1379114
Reference: [9] Zelinka, B.: On a problem of E. Prisner concerning the biclique operator.Math. Bohem. 127 (2002), 371-373. Zbl 1003.05048, MR 1931321
.

Files

Files Size Format View
MathBohem_140-2015-3_8.pdf 232.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo