[1] Bartolo, P., Benci, V., Fortunato, D.: 
Abstract critical point theorems and applications to some nonlinear problems with ``strong'' resonance at infinity. Nonlinear Anal., Theory Methods Appl. 7 (1983), 981-1012. 
MR 0713209 | 
Zbl 0522.58012[6] Kokocki, P.: Dynamics of Nonlinear Evolution Equations at Resonance, PhD dissertation. Nicolaus Copernicus University Toruń (2012).
[7] Kokocki, P.: 
Effect of resonance on the existence of peridic solutions for strongly damped wave equation. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 125 (2015), Article ID 10526, 167-200. 
DOI 10.1016/j.na.2015.05.012 | 
MR 3373579[8] Landesman, E. M., Lazer, A. C.: 
Nonlinear perturbations of linear elliptic boundary value problems at resonance. J. Math. Mech. 19 (1969/1970), 609-623. 
MR 0267269[9] Massatt, P.: 
Limiting behavior for strongly damped nonlinear wave equations. Nonlinear phenomena in mathematical sciences, Proc. Int. Conf., Arlington/Tex., 1980. J. Differential Equations 48 (1982), 334-349. 
DOI 10.1016/0022-0396(83)90098-0 | 
MR 0702424[11] Rybakowski, K. P.: 
The Homotopy Index and Partial Differential Equations. Universitext Springer, Berlin (1987). 
MR 0910097 | 
Zbl 0628.58006[12] Rybakowski, K. P.: 
Nontrivial solutions of elliptic boundary value problems with resonance at zero. Ann. Mat. Pura Appl. (4) 139 (1985), 237-277. 
MR 0798176 | 
Zbl 0572.35037