Previous |  Up |  Next

Article

Title: Transformations to symmetry based on the probability weighted characteristic function (English)
Author: Meintanis, Simos G.
Author: Stupfler, Gilles
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 4
Year: 2015
Pages: 571-587
Summary lang: English
.
Category: math
.
Summary: We suggest a nonparametric version of the probability weighted empirical characteristic function (PWECF) introduced by Meintanis et al. [10] and use this PWECF in order to estimate the parameters of arbitrary transformations to symmetry. The almost sure consistency of the resulting estimators is shown. Finite-sample results for i.i.d. data are presented and are subsequently extended to the regression setting. A real data illustration is also included. (English)
Keyword: characteristic function
Keyword: empirical characteristic function
Keyword: probability weighted moments
Keyword: symmetry transformation
MSC: 62G10
MSC: 62G20
idZBL: Zbl 06530334
idMR: MR3423188
DOI: 10.14736/kyb-2015-4-0571
.
Date available: 2015-11-20T12:13:44Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144469
.
Reference: [1] Bickel, P. J.: On adaptive estimation..Ann. Statist. 10 (1982), 647-671. Zbl 0489.62033, MR 0663424, 10.1214/aos/1176345863
Reference: [2] Bickel, P. J., Doksum, K. A.: An analysis of transformations revisited..J. Amer. Statist. Assoc. 76 (1981), 296-311. Zbl 0464.62058, MR 0624332, 10.1080/01621459.1981.10477649
Reference: [3] Box, G. E. P., Cox, D. R.: An analysis of transformations..J. Roy. Statist. Soc. B 26 (1964), 211-243. Zbl 0504.62058, MR 0192611
Reference: [4] Burbidge, J. B., Magee, L., Robb, A. L.: Alternative transformations to handle extreme values of the dependent variable..J. Amer. Statist. Assoc. 83 (1988), 123-127. MR 0941005, 10.1080/01621459.1988.10478575
Reference: [5] Chen, G., Lockhart, R., Stephens, M. A.: Box-Cox transformations in linear models: large sample theory and tests for normality (with discussion)..Canad. J. Statist. 30 (2002), 1-59. MR 1926062, 10.2307/3315946
Reference: [6] González-Rivera, G., Drost, F. C.: Efficiency comparisons of maximum-likelihood-based estimators in GARCH models..J. Econometr. 93 (1999), 93-111. Zbl 0941.62101, MR 1720166, 10.1016/s0304-4076(99)00005-6
Reference: [7] Horowitz, J. L.: Semiparametric and Nonparametric Methods in Econometrics..Springer-Verlag, New York 2009. Zbl 1278.62005, MR 2535631, 10.1007/978-0-387-92870-8
Reference: [8] John, J. A., Draper, N. R.: An alternative family of transformations..J. Roy. Statist. Soc. C 29 (1980), 190-197. Zbl 0443.62062, 10.2307/2986305
Reference: [9] Manly, B. F. J.: Exponential data transformations..J. Roy. Statist. Soc. D 25 (1976), 37-42.
Reference: [10] Meintanis, S. G., Swanepoel, J., Allison, J.: The probability weighted characteristic function and goodness-of-fit testing..J. Statist. Plann. Infer. 146 (2014), 122-132. Zbl 1279.62107, MR 3132485, 10.1016/j.jspi.2013.09.011
Reference: [11] Newey, W. K.: Adaptive estimation of regression models via moment restrictions..J. Econometr. 38 (1988), 301-339. Zbl 0686.62045, MR 0964634, 10.1016/0304-4076(88)90048-6
Reference: [12] Newey, W. K., Steigerwald, D. G.: Asymptotic bias for quasi-maximum-likelihood estimators in conditional heteroskedasticity models..Econometrica 65 (1997), 587-599. Zbl 0870.62091, MR 1445623, 10.2307/2171754
Reference: [13] Parzen, E.: On estimation of a probability density function and mode..Ann. Math. Statist. 33 (1962), 1065-1076. Zbl 0116.11302, MR 0143282, 10.1214/aoms/1177704472
Reference: [14] Pólya, G., Szegő, G.: Problems and Theorems in Analysis, Volume I..Springer-Verlag, Berlin 1998.
Reference: [15] Rosenblatt, M.: Remarks on some nonparametric estimates of a density function..Ann. Math. Statist. 27 (1956), 832-837. Zbl 0073.14602, MR 0079873, 10.1214/aoms/1177728190
Reference: [16] Savchuk, O. Y., Schick, A.: Density estimation for power transformations..J. Nonparametr. Statist. 25 (2013), 545-559. MR 3174283, 10.1080/10485252.2013.811788
Reference: [17] Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau..J. Amer. Statist. Assoc. 63 (1968), 1379-1389. Zbl 0167.47202, MR 0258201, 10.1080/01621459.1968.10480934
Reference: [18] Theil, H.: A rank-invariant method of linear and polynomial regression analysis. I, II, III..Nederl. Akad. Wetensch. Proc. 53 (1950), 386-392, 521-525, 1397-1412. MR 0036490
Reference: [19] Yeo, I.-K., Johnson, R. A.: A new family of power transformations to improve normality or symmetry..Biometrika 87 (2000), 954-959. Zbl 1028.62010, MR 1813988, 10.1093/biomet/87.4.954
Reference: [20] Yeo, I.-K., Johnson, R. A.: A uniform law of large numbers for $U$-statistics with application to transforming to near symmetry..Statist. Probab. Lett. 51 (2001), 63-69. MR 1820146, 10.1016/S0167-7152(00)00143-7
Reference: [21] Yeo, I.-K., Johnson, R. A.: An empirical characteristic function approach to selecting a transformation to symmetry..In: Contemporary Developments in Statistical Theory (S. Lahiri, A. Schick, A. SenGupta and T. Sriram, eds.), Springer International Publishing 2014, pp. 191-202. MR 3149922, 10.1007/978-3-319-02651-0_11
Reference: [22] Yeo, I.-K., Johnson, R. A., Deng, X. W.: An empirical characteristic function approach to selecting a transformation to normality..Commun. Stat. Appl. Methods 21 (2014), 213-224. Zbl 1305.62073, 10.5351/csam.2014.21.3.213
.

Files

Files Size Format View
Kybernetika_51-2015-4_2.pdf 345.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo