Previous |  Up |  Next

Article

Title: Note on stability estimation in average Markov control processes (English)
Author: Martínez Sánchez, Jaime
Author: Zaitseva, Elena
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 4
Year: 2015
Pages: 629-638
Summary lang: English
.
Category: math
.
Summary: We study the stability of average optimal control of general discrete-time Markov processes. Under certain ergodicity and Lipschitz conditions the stability index is bounded by a constant times the Prokhorov distance between distributions of random vectors determinating the “original and the perturbated” control processes. (English)
Keyword: discrete-time Markov control processes
Keyword: average criterion
Keyword: stability index
Keyword: Prokhorov metric
MSC: 90C40
MSC: 93E20
idZBL: Zbl 06537775
idMR: MR3423190
DOI: 10.14736/kyb-2015-4-0629
.
Date available: 2015-11-20T12:16:52Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144471
.
Reference: [1] Arapostathis, A., Borkar, V. S., Fernández-Gaucherand, E., Ghosh, M. K., Marcus, S. I.: Discrete-time controlled Markov processes with average cost criterion: A survey..SIAM J. Control and Optimization 31 (1993), 282-344. Zbl 0770.93064, MR 1205981, 10.1137/0331018
Reference: [2] Dudley, R. M.: Real Analysis and Probability..Wadsworth and Brooks/Cole, Pacific Grove 1989. Zbl 1023.60001, MR 0982264, 10.1017/s0013091500018265
Reference: [3] Dudley, R. M.: The speed of mean Glivenko-Cantelly convergence..Ann. Math. Stat. 40 (1969), 40-50. MR 0236977, 10.1214/aoms/1177697802
Reference: [4] Dynkin, E. B., Yushkevich, A. A.: Controlled Markov Processes..Springer-Verlag, New York 1979. MR 0554083, 10.1002/zamm.19810610317
Reference: [5] Gordienko, E., Lemus-Rodríguez, E., Montes-de-Oca, R.: Average cost Markov control processes: stability with respect to the Kantorovich metric..Math. Methods Oper. Res. 70 (2009), 13-33. Zbl 1176.60062, MR 2529423, 10.1007/s00186-008-0229-6
Reference: [6] Gordienko, E. I.: Stability estimates for controlled Markov chains with a minorant..J. Soviet. Math. 40 (1988), 481-486. Zbl 0638.90101, MR 0957101, 10.1007/bf01083641
Reference: [7] Gordienko, E. I., Yushkevich, A. A.: Stability estimates in the problem of average optimal switching of a Markov Chain..Math. Methods Oper. Res. 57 (2003), 345-365. Zbl 1116.90401, MR 1990916
Reference: [8] Hernández-Lerma, O.: Adaptive Markov Control Processes..Springer-Verlag, New York 1989. Zbl 0677.93073, MR 0995463, 10.1007/978-1-4419-8714-3
Reference: [9] Montes-de-Oca, R., Salem-Silva, F.: Estimates for perturbations of average Markov decision processes with a minimal state and upper bounded by stochastically ordered Markov chains..Kybernetika 41 (2005), 757-772. Zbl 1249.90313, MR 2193864
Reference: [10] Rachev, S. T., Rüschendorf, L.: Mass Transportation Problem, Vol. II: Applications..Springer, New York 1998. MR 1619171
Reference: [11] Vega-Amaya, O.: The average cost optimality equation: a fixed point approach..Bol. Soc. Math. Mexicana 9 (2003), 185-195. Zbl 1176.90626, MR 1988598
.

Files

Files Size Format View
Kybernetika_51-2015-4_4.pdf 300.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo