Title:
|
Higgs bundles and representation spaces associated to morphisms (English) |
Author:
|
Biswas, Indranil |
Author:
|
Florentino, Carlos |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
51 |
Issue:
|
4 |
Year:
|
2015 |
Pages:
|
191-199 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $G$ be a connected reductive affine algebraic group defined over the complex numbers, and $K\,\subset\, G$ be a maximal compact subgroup. Let $X$, $Y$ be irreducible smooth complex projective varieties and $f\colon X\to Y$ an algebraic morphism, such that $\pi_1(Y)$ is virtually nilpotent and the homomorphism $f_*\colon \pi_1(X)\to\pi_1(Y)$ is surjective. Define \begin{align*} {\mathcal R }^f\big(\pi_1(X), G\big)&= \{\rho \in \operatorname{Hom}\big(\pi_1(X), G\big) \mid A\circ\rho \ \text{ factors through }~ f_*\}\,,\\[6pt] {\mathcal R }^f\big(\pi_1(X), K\big)&= \{\rho \in \operatorname{Hom}\big(\pi_1(X), K\big) \mid A\circ\rho \ \text{ factors through }~ f_*\}\,, \end{align*} where $A\colon G\to \operatorname{GL}(\operatorname{Lie}(G))$ is the adjoint action. We prove that the geometric invariant theoretic quotient ${\mathcal R }^f(\pi_1(X, x_0),\, G)/\!\!/G$ admits a deformation retraction to ${\mathcal R }^f(\pi_1(X, x_0),\, K)/K$. We also show that the space of conjugacy classes of $n$ almost commuting elements in $G$ admits a deformation retraction to the space of conjugacy classes of $n$ almost commuting elements in $K$. (English) |
Keyword:
|
Higgs bundle |
Keyword:
|
flat connection |
Keyword:
|
representation space |
Keyword:
|
deformation retraction |
MSC:
|
14J60 |
idZBL:
|
Zbl 06537724 |
idMR:
|
MR3434602 |
DOI:
|
10.5817/AM2015-4-191 |
. |
Date available:
|
2015-11-30T09:56:39Z |
Last updated:
|
2016-04-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144478 |
. |
Reference:
|
[1] Anchouche, B., Biswas, I.: Einstein–Hermitian connections on polystable principal bundles over a compact Kähler manifold.Amer. J. Math. 123 (2001), 207–228. Zbl 1007.53026, MR 1828221, 10.1353/ajm.2001.0007 |
Reference:
|
[2] Biswas, I., Bruzzo, U.: On semistable principal bundles over a complex projective manifold. II.Geom. Dedicata 146 (2010), 27–41. Zbl 1196.14043, MR 2644269, 10.1007/s10711-009-9424-8 |
Reference:
|
[3] Biswas, I., Florentino, C.: Character varieties of virtually nilpotent Kähler groups and $G$–Higgs bundles.Ann. Inst. Fourier (Grenoble), to appear, arXiv:1405.0610. |
Reference:
|
[4] Biswas, I., Florentino, C.: Commuting elements in reductive groups and Higgs bundles on Abelian varieties.J. Algebra 388 (2013), 194–202. Zbl 1285.14045, MR 3061684, 10.1016/j.jalgebra.2013.05.006 |
Reference:
|
[5] Biswas, I., Gómez, T.L.: Connections and Higgs fields on a principal bundle.Ann. Global Anal. Geom. 33 (2008), 19–46. Zbl 1185.14032, MR 2369185, 10.1007/s10455-007-9072-x |
Reference:
|
[6] Borel, A., Friedman, R., Morgan, J.W.: Almost commuting elements in compact Lie groups.Mem. Amer. Math. Soc. 157 (2002), no. 747. Zbl 0993.22002, MR 1895253 |
Reference:
|
[7] Florentino, C., Lawton, S.: Topology of character varieties of Abelian groups.preprint arXiv:1301.7616. Zbl 1300.14045, MR 3227204 |
Reference:
|
[8] Kac, V.G., Smilga, A.V.: Vacuum structure in supersymmetric Yang-Mills theories with any gauge group.preprint arXiv hep-th/9902029, 1999. Zbl 1035.81061, MR 1885976 |
Reference:
|
[9] Katzarkov, L., Pantev, T.: Representations of fundamental groups whose Higgs bundles are pullbacks.J. Differential Geom. 39 (1994), 103–121. Zbl 0810.14010, MR 1258916 |
Reference:
|
[10] Pettet, A., Souto, J.: Commuting tuples in reductive groups and their maximal compact subgroups.Geom. Topol. 17 (2013), 2513–2593. Zbl 1306.55007, MR 3190294, 10.2140/gt.2013.17.2513 |
Reference:
|
[11] Simpson, C.T.: Higgs bundles and local systems.Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5–95. Zbl 0814.32003, MR 1179076, 10.1007/BF02699491 |
. |