Previous |  Up |  Next

Article

Title: On the relations between the central factor-module and the derived submodule in modules over group rings (English)
Author: Kurdachenko, Leonid A.
Author: Subbotin, Igor Ya.
Author: Chupordia, Vasyl A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 4
Year: 2015
Pages: 433-445
Summary lang: English
.
Category: math
.
Summary: A modular analogue of the well-known group theoretical result about finiteness of the derived subgroup in a group with a finite factor by its center has been obtained. (English)
Keyword: modules
Keyword: group rings
Keyword: modules over group rings
Keyword: generalized soluble groups
Keyword: modules of finite rank
Keyword: an integral domain
Keyword: a scalar ring
Keyword: Schur's theorem
Keyword: Baer's theorem
MSC: 20C07
MSC: 20F19
idZBL: Zbl 06537718
idMR: MR3434223
DOI: 10.14712/1213-7243.2015.136
.
Date available: 2015-12-17T11:46:16Z
Last updated: 2018-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/144753
.
Reference: [1] Baer R.: Representations of groups as quotient groups. II. Minimal central chains of a groups.Trans. Amer. Math. Soc. 58 (1945), 348–389. MR 0015107, 10.1090/S0002-9947-1945-0015107-1
Reference: [2] Baer R.: Endlichkeitskriterien fur Kommutatorgruppen.Math. Ann. 124 (1952), 161–177. Zbl 0046.02202, MR 0045720, 10.1007/BF01343558
Reference: [3] Ballester-Bolinches A., Camp-Mora S., Kurdachenko L.A., Otal J.: Extension of a Schur theorem to groups with a central factor with a bounded section rank.J. Algebra 393 (2013), 1–15. Zbl 1294.20045, MR 3090052, 10.1016/j.jalgebra.2013.06.035
Reference: [4] Dixon M.R., Kurdachenko L.A., Otal J.: Linear analogues of theorems of Schur, Baer and Hall.Int. J. Group Theory 2 (2013), no. 1, 79–89. Zbl 1306.20055, MR 3033535
Reference: [5] Hall P.: Nilpotent groups.Notes of lectures given at the Canadian Math. Congress, University of Alberta, August 1957, pp. 12–30. Zbl 0211.34201
Reference: [6] Kargapolov M.I., Merzlyakov Yu.I.: Fundamentals of the theory of groups.Nauka, Moscow, 1982. MR 0677282
Reference: [7] Kurdachenko L.A., Otal J.: The rank of the factor-group modulo the hypercenter and the rank of the some hypocenter of a group.Cent. Eur. J. Math. 11 (2013), no. 10, 1732–1741. Zbl 1316.20039, MR 3080231
Reference: [8] Kurdachenko L.A., Otal J., Subbotin I.Ya.: Artinian Modules over Group Rings.Frontiers in Mathematics, Birkhäuser, Basel, 2007, 248 p. Zbl 1110.16001, MR 2270897
Reference: [9] Kurosh A.G.: The Theory of Groups.Nauka, Moscow, 1967. Zbl 0111.02502, MR 0249495
Reference: [10] Lucchini A.: A bound on the number of generators of a finite group.Archiv. Math. (Basel) 53 (2013), 313–31. Zbl 0679.20028, MR 1015993, 10.1007/BF01195209
Reference: [11] Neumann B.H.: Groups with finite classes of conjugate elements.Proc. London Math. Soc. 1 (1951), 178–187. Zbl 0043.02401, MR 0043779
Reference: [12] Robinson D.J.S.: Finiteness Conditions and Generalized Soluble Groups.Part 1. Springer, Berlin, 1972, xv+210 pp. Zbl 0243.20033, MR 0332989
Reference: [13] Saeedi F., Veisi B.: On Schur's theorem and its converses for n-Lie algebras.Linear Multilinear Algebra 62 (2014), no. 9, 1139–1145. Zbl 1307.17007, MR 3250935, 10.1080/03081087.2013.809871
Reference: [14] Schur I.: Über die Darstellungen der endlichen Gruppen durch gebrochene lineare substitutionen.J. reine angew. Math., 127 (1904), 20–50. MR 1580631
Reference: [15] Stewart I.N.: Verbal and marginal properties of non-associative algebras in the spirit of infinite group theory.Proc. London Math. Soc. 28 (1974), 129–140. MR 0338095
Reference: [16] Wehrfritz B.A.F.: Infinite Linear Groups.Springer, Berlin, 1973. Zbl 0261.20038, MR 0335656
Reference: [17] Wiegold J.: Multiplicators and groups with finite central factor-groups.Math. Z. 89 (1965), 345–347. Zbl 0134.03002, MR 0179262, 10.1007/BF01112166
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-4_3.pdf 267.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo