Previous |  Up |  Next

Article

Title: A proof of the independence of the Axiom of Choice from the Boolean Prime Ideal Theorem (English)
Author: Repický, Miroslav
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 4
Year: 2015
Pages: 543-546
Summary lang: English
.
Category: math
.
Summary: We present a proof of the Boolean Prime Ideal Theorem in a transitive model of ZF in which the Axiom of Choice does not hold. We omit the argument based on the full Halpern-Läuchli partition theorem and instead we reduce the proof to its elementary case. (English)
Keyword: Boolean Prime Ideal Theorem
Keyword: the Axiom of Choice
MSC: 03E25
MSC: 03E35
MSC: 03E40
MSC: 03E45
idZBL: Zbl 06537723
idMR: MR3434228
DOI: 10.14712/1213-7243.2015.138
.
Date available: 2015-12-17T11:53:21Z
Last updated: 2018-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/144758
.
Reference: [1] Halpern J.D., Läuchli H.: A partition theorem.Trans. Amer. Math. Soc. 124 (1966), 360–367. Zbl 0158.26902, MR 0200172, 10.1090/S0002-9947-1966-0200172-2
Reference: [2] Halpern J.D., Lévy A.: The Boolean Prime Ideal Theorem does not imply the Axiom of Choice.In: Axiomatic Set Theory, Proceedings of Symposia in Pure Mathematics, vol. XIII, Part I, pp. 83–134, AMS, Providence, 1971. Zbl 0233.02024, MR 0284328
Reference: [3] Jech T.: Set Theory.Academic Press, New York-London, 1978. Zbl 1007.03002, MR 0506523
Reference: [4] Jech T.: Set Theory.the third millennium edition, revised and expanded, Springer Monographs in Mathematics, Springer, Berlin, 2003. Zbl 1007.03002, MR 1940513
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-4_8.pdf 187.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo