Previous |  Up |  Next

Article

Title: Cyclic Type Fixed Point Results in 2-Menger Spaces (English)
Author: CHOUDHURY, Binayak S.
Author: BHANDARI, Samir Kumar
Author: SAHA, Parbati
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 54
Issue: 2
Year: 2015
Pages: 5-20
Summary lang: English
.
Category: math
.
Summary: In this paper we introduce generalized cyclic contractions through $r$ number of subsets of a probabilistic 2-metric space and establish two fixed point results for such contractions. In our first theorem we use the Hadzic type $t$-norm. In another theorem we use a control function with minimum $t$-norm. Our results generalizes some existing fixed point theorem in 2-Menger spaces. The results are supported with some examples. (English)
Keyword: 2-Menger space
Keyword: Cauchy sequence
Keyword: fixed point
Keyword: control function
Keyword: $t$-norm
MSC: 54E40
MSC: 54H25
idZBL: Zbl 1355.54037
idMR: MR3469688
.
Date available: 2015-12-21T17:00:55Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/144759
.
Reference: [1] Banach, S.: Sur les Operations dans les Ensembles Abstraits et leur Application aux Equations Integrales. Fundamenta Mathematicae 3 (1922), 133–181. 10.4064/fm-3-1-133-181
Reference: [2] Choudhury, B. S., Das, K. P.: A new contraction principle in Menger spaces. Acta Mathematica Sinica, English Series 24 (2008), 1379–1386. Zbl 1155.54026, MR 2438308, 10.1007/s10114-007-6509-x
Reference: [3] Choudhury, B. S., Dutta, P. N., Das, K. P.: A fixed point result in Menger spaces using a real function. Acta. Math. Hungar. 122 (2008), 203–216. MR 2480861, 10.1007/s10474-008-7242-3
Reference: [4] Choudhury, B. S., Das, K. P.: A coincidence point result in Menger spaces using a control function. Chaos, Solitons and Fractals 42 (2009), 3058–3063. Zbl 1198.54072, MR 2560014, 10.1016/j.chaos.2009.04.020
Reference: [5] Choudhury, B. S., Das, K. P., Bhandari, S. K.: A fixed point theorem for Kannan type mappings in 2-Menger spaces using a control function. Bulletin of Mathematical Analysis and Applications 3 (2011), 141–148. MR 2955353
Reference: [6] Choudhury, B. S., Das, K. P., Bhandari, S. K.: Fixed point theorem for mappings with cyclic contraction in Menger spaces. Int. J. Pure Appl. Sci. Technol. 4 (2011), 1–9.
Reference: [7] Choudhury, B. S., Das, K. P., Bhandari, S. K.: A Generalized cyclic C-contraction priniple in Menger spaces using a control function. Int. J. Appl. Math. 24, 5 (2011), 663–673. MR 2931524
Reference: [8] Choudhury, B. S., Das, K. P., Bhandari, S. K.: A fixed point theorem in 2-Menger space using a control function. Bull. Cal. Math. Soc. 104, 1 (2012), 21–30. MR 3088824
Reference: [9] Choudhury, B. S., Das, K. P., Bhandari, S. K.: Two Ciric type probabilistic fixed point theorems for discontinuous mappings. International Electronic Journal of Pure and Applied Mathematics 5, 3 (2012), 111–126. MR 3016126
Reference: [10] Choudhury, B. S., Das, K. P., Bhandari, S. K.: Cyclic contraction result in 2-Menger space. Bull. Int. Math. Virtual Inst. 2 (2012), 223–234. MR 3159041
Reference: [11] Choudhury, B. S., Das, K. P., Bhandari, S. K.: Generalized cyclic contraction in Menger spaces using a control function. Rev. Bull. Cal. Math. Soc. 20, 1 (2012), 35–42.
Reference: [12] Choudhury, B. S., Das, K. P., Bhandari, S. K.: Cyclic contraction of Kannan type mappings in generalized Menger space using a control function. Azerbaijan Journal of Mathematics 2, 2 (2012), 43–55. MR 2967294
Reference: [13] Choudhury, B. S., Das, K. P., Bhandari, S. K.: Fixed points of p-cyclic Kannan type contractions in probabilistic spaces. J. Math. Comput. Sci. 2 (2012), 565–583. MR 2929240
Reference: [14] Dutta, P. N., Choudhury, B. S., Das, K. P.: Some fixed point results in Menger spaces using a control function. Surveys in Mathematics and its Applications 4 (2009), 41–52. Zbl 1180.54054, MR 2485791
Reference: [15] Gähler, S.: 2-metrische R$\ddot{a}$ume and ihre topologische strucktur. Math. Nachr. 26 (1963), 115–148. MR 0162224, 10.1002/mana.19630260109
Reference: [16] Gähler, S.: Uber die unifromisieberkeit 2-metrischer Raume. Math. Nachr. 28 (1965), 235–244. 10.1002/mana.19640280309
Reference: [17] Fernandez-Leon, A.: Existence and uniqueness of best proximity points in geodesic metric spaces. Nonlinear Analysis 73 (2010), 915–921. Zbl 1196.54050, MR 2653759, 10.1016/j.na.2010.04.005
Reference: [18] Golet, I.: A fixed point theorems in probabilistic 2-metric spaces. Sem. Math. Phys. Inst. Polit. Timisoara (1988), 21–26.
Reference: [19] Hadžić, O.: A fixed point theorem for multivalued mappings in 2-menger spaces. Univ. Novi Sad, Zb. Rad. Prirod., Mat. Fak., Ser. Mat. 24 (1994), 1–7. Zbl 0897.54036, MR 1413932
Reference: [20] Hadžić, O., Pap, E.: Fixed Point Theory in Probabilistic Metric Spaces. Mathematics and Its Applications 536, Springer Netherlands, New York–Heidelberg–Berlin, 2001. MR 1896451
Reference: [21] Iseki, K.: Fixed point theorems in 2-metric space. Math. Sem. Notes, Kobe Univ. 3 (1975), 133–136. MR 0415596
Reference: [22] Khan, M. S.: On the convergence of sequences of fixed points in 2-metric spaces. Indian J. Pure Appl. Math. 10 (1979), 1062–1067. Zbl 0417.54020, MR 0547888
Reference: [23] Karpagam, S., Agrawal, S.: Best proximity point theorems for cyclic orbital Meir–Keeler contraction maps. Nonlinear Analysis 74 (2011), 1040–1046. Zbl 1206.54047, MR 2746787, 10.1016/j.na.2010.07.026
Reference: [24] Khan, M. S., Swaleh, M., Sessa, S.: Fixed point theorems by altering distances between the points. Bull. Austral. Math. Soc. 30 (1984), 1–9. Zbl 0553.54023, MR 0753555, 10.1017/S0004972700001659
Reference: [25] Kirk, W. A., Srinivasan, P. S., Veeramani, P.: Fixed points for mappings satisfying cyclical contractive conditions. Fixed Point Theorys 4 (2003), 79–89. Zbl 1052.54032, MR 2031823
Reference: [26] Lal, S. N., Singh, A. K.: An analogue of Banach’s contraction principle for 2-metric spaces. Bull. Austral. Math. Soc. 18 (1978), 137–143. Zbl 0385.54028, MR 0645161, 10.1017/S0004972700007887
Reference: [27] Mihet, D.: Altering distances in probabilistic Menger spaces. Nonlinear Analysis 71 (2009), 2734–2738. Zbl 1176.54034, MR 2532798, 10.1016/j.na.2009.01.107
Reference: [28] Naidu, S. V. R., Prasad, J. R.: Fixed point theorems in metric, 2-metric and normed linear spaces. Indian J. Pure Appl. Math 17 (1986), 602–612. Zbl 0584.54042, MR 0844195
Reference: [29] Naidu, S. V. R., Prasad, J. R.: Fixed point theorems in 2-metric spaces. Indian J. Pure Appl. Math 17 (1986), 974–993. Zbl 0592.54049, MR 0856334
Reference: [30] Naidu, S. V. R.: Some fixed point theorems in metric and 2-metric spaces. Int. J. Math. Math. Sci. 28, 11 (2001), 625–638. Zbl 1001.47037, MR 1892319, 10.1155/S016117120101064X
Reference: [31] Naidu, S. V. R.: Some fixed point theorems in metric spaces by altering distances. Czechoslovak Math. J. 53 (2003), 205–212. Zbl 1013.54011, MR 1962009, 10.1023/A:1022991929004
Reference: [32] Rhoades, B. E.: Contraction type mapping on a 2-metric spaces. Math. Nachr. 91 (1979), 151–155. MR 0563606, 10.1002/mana.19790910112
Reference: [33] Sastry, K. P. R., Babu, G. V. R.: Some fixed point theorems by altering distances between the points. Indian J. Pure. Appl. Math. 30, 6 (1999), 641–647. Zbl 0938.47044, MR 1701042
Reference: [34] Sastry, K. P. R., Naidu, S. V. R., Babu, G. V. R., Naidu, G. A.: Generalisation of common fixed point theorems for weakly commuting maps by altering distances. Tamkang Journal of Mathematics 31, 3 (2000), 243–250. MR 1778222
Reference: [35] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. Elsevier, North-Holland, New York, 1983. Zbl 0546.60010, MR 0790314
Reference: [36] Sehgal, V. M., Bharucha-Reid, A. T.: Fixed point of contraction mappings on PM space. Math. Sys. Theory 6, 2 (1972), 97–100. MR 0310858, 10.1007/BF01706080
Reference: [37] Sharma, A. K.: A note on fixed points in 2-metric spaces. Indian J. Pure Appl. Math. 11 (1980), 1580–1583. Zbl 0448.54049, MR 0617834
Reference: [38] Chang, S.-S., Huang, N.-J.: On generalized 2-metric spaces and probabilistic 2-metric spaces, with applications to fixed point theory. Math. Jap. 34, 6 (1989), 885–900. MR 1025044
Reference: [39] Shi, Y., Ren, L., Wang, X.: The extension of fixed point theorems for set valued mapping. J. Appl. Math. Computing 13 (2003), 277–286. Zbl 1060.47057, MR 2000215, 10.1007/BF02936092
Reference: [40] Singh, S. L., Talwar, R., Zeng, W.-Z.: Common fixed point theorems in 2-menger spaces and applications. Math. Student 63 (1994), 74–80. Zbl 0878.54040, MR 1292372
Reference: [41] Vetro, C.: Best proximity points: Convergence and existence theorems for p-cyclic mappings. Nonlinear Analysis 73 (2010), 2283–2291. Zbl 1229.54066, MR 2674204, 10.1016/j.na.2010.06.008
Reference: [42] Zeng, W.-Z.: Probabilistic 2-metric spaces. J. Math. Research Expo. 2 (1987), 241–245. MR 0929343
Reference: [43] Wlodarczyk, K., Plebaniak, R., Banach, A.: Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces. Nonlinear Analysis 70 (2009), 3332–3341. Zbl 1171.54311, MR 2503079, 10.1016/j.na.2008.04.037
Reference: [44] Wlodarczyk, K., Plebaniak, R., Obczyński, C.: Convergence theorems, best approximation and best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces. Nonlinear Analysis 72 (2010), 794–805. Zbl 1185.54020, MR 2579346, 10.1016/j.na.2009.07.024
.

Files

Files Size Format View
ActaOlom_54-2015-2_1.pdf 337.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo