Previous |  Up |  Next

Article

Title: Quad-tree Based Finite Volume Method for Diffusion Equations with Application to SAR Imaged Filtering (English)
Author: Krivá, Zuzana
Author: Papčo, Juraj
Author: VANKO, Jakub
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 54
Issue: 2
Year: 2015
Pages: 41-61
Summary lang: English
.
Category: math
.
Summary: In this paper we present a method to remove the noise by applying the Perona Malik algorithm working on an irregular computational grid. This grid is obtained with a quad-tree technique and is adapted to the image intensities—pixels with similar intensities can form large elements. We apply this algorithm to remove the speckle noise present in SAR images, i.e., images obtained by radars with a synthetic aperture enabling to increase their resolution in an electronic way. The presence of the speckle in an image degrades the quality of the image and makes interpretation of features more difficult. Our purpose is to remove this noise to such a degree that the edge detection or landscape elements detection can be performed with relatively simple tools. The progress of smoothing leads to grids with significantly less number of elements than the original number of pixels. The results are compared with measurements performed on an inspected area of interest. At the end we show the possibility to modify the scheme to the adaptive mean curvature flow filter which can be used to smooth the boundaries. (English)
Keyword: Image processing
Keyword: linear heat equation
Keyword: finite volume method
Keyword: adaptivity
Keyword: SAR image
Keyword: speckle noise
MSC: 65M50
MSC: 65M60
MSC: 68U10
idZBL: Zbl 1347.65141
idMR: MR3469690
.
Date available: 2015-12-21T17:05:36Z
Last updated: 2023-08-27
Stable URL: http://hdl.handle.net/10338.dmlcz/144762
.
Reference: [1] Bänsch, E., Mikula, K.: A coarsening finite element strategy in image selective smoothing. Computing and Visualization in Science 1 (1997), 53–61. Zbl 0971.65084, 10.1007/s007910050005
Reference: [2] Canny, J.: A computational approach to edge detection, in pattern analysis and machine intelligence. IEEE Transactions on Pattern Analysis and Machine Intelligence ol.PAMI-8, 6 (1986), 679–698. 10.1109/TPAMI.1986.4767851
Reference: [3] Catté, F., Lions, P. L., Morel, J. M., Coll, T.: Image selective smoothing and edge detectizon by nonlinear diffusion. SIAM J. Numer. Anal. 29 (1992), 182–193. MR 1149092, 10.1137/0729012
Reference: [4] Eymard, R., Gallouët, T., Herbin, R.: Finite volume method. In: Handbook for Numerical Analysis 7, Elsevier, Amsterdam, 2000, 713–1020. MR 1804748
Reference: [5] Eymard, R., Handlovičová, A., Mikula, K.: Approximation of nonlinear parabolic equations using a family of conformal and non-conformal schemes. Communications in Pure and Applied Analysis 11 (2012), 147–172. Zbl 1264.65159, MR 2833342, 10.3934/cpaa.2012.11.147
Reference: [6] Eymard, R., Handlovičová, A., Mikula, K.: Study of a finite volume scheme for the regularized mean curvature ow level set equation. IMA Journal of Numerical Analysis 31 (2011), 813–846. MR 2832781, 10.1093/imanum/drq025
Reference: [7] Krivá, Z., Mikula, K.: An adaptive finite volume scheme for solving non-linear diffusion equations in image processing. J. Visual Communication and Image Representation 13 (2002), 22–35. 10.1006/jvci.2001.0502
Reference: [8] Krivá, Z., Mikula, K.: Adaptive diamond cell finite volume method in image processing. In: Proc. Algoritmy 2009, Conf. on Scientific Computing (2009), 174–188. Zbl 1173.94322
Reference: [9] Krivá, Z., Mikula, K.: A model and numerical scheme for processing of color images. Journal of Electrical Engineering FEI STU 12 (2000), 21–25. Zbl 0979.35068
Reference: [10] Lee, J.-S., Pottier, L.: Polarimetric Radar Imaging: from Basics to Applications. CRC Press, Boca Raton, 2009.
Reference: [11] Osher, S., Sethian, J. A.: Front propagating with curvature dependent speed: algorithms based on the Hamilton–Jacobi formulation. J. Comput. Phys. 29 (1988), 12–49. MR 0965860, 10.1016/0021-9991(88)90002-2
Reference: [12] Papčo, J., Bakoň, M.: Object Recognition Based on High Resolution Radar Imagery. German Aerospace Center (DLR), TSX-Archive-2012 project ID LAN1583, 2012.
Reference: [13] Airbus, Defence and Space: TerraSAR-X Image Product Guide, Basic and Enhanced Radar Satellite Imagery. (http://www2.geo-airbusds.com/files/pmedia/public/r459 9 201408 tsxx-itd-ma-0009 tsx-productguide i2.00.pdf), 2014.
Reference: [14] Trubač, M.: Adaptívne algoritmy metódy konečných objemov aplikované na analýzu viackanálového obrazu. Diploma thesis, STU, Bratislava, 2014.
Reference: [15] Vanko, J.: Monitoring Landscape Changes Using Satellite Radar Imagery. Diploma thesis, STU, Bratislava, 2015.
.

Files

Files Size Format View
ActaOlom_54-2015-2_3.pdf 4.942Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo