Previous |  Up |  Next

Article

Title: On exponential stability of second order delay differential equations (English)
Author: Agarwal, Ravi P.
Author: Domoshnitsky, Alexander
Author: Maghakyan, Abraham
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 4
Year: 2015
Pages: 1047-1068
Summary lang: English
.
Category: math
.
Summary: We propose a new method for studying stability of second order delay differential equations. Results we obtained are of the form: the exponential stability of ordinary differential equation implies the exponential stability of the corresponding delay differential equation if the delays are small enough. We estimate this smallness through the coefficients of this delay equation. Examples demonstrate that our tests of the exponential stability are essentially better than the known ones. This method works not only for autonomous equations but also for equations with variable coefficients and delays. (English)
Keyword: delay equations
Keyword: uniform exponential stability
Keyword: exponential estimates of solutions
Keyword: Cauchy function
MSC: 34K20
idZBL: Zbl 06537710
idMR: MR3441335
DOI: 10.1007/s10587-015-0227-9
.
Date available: 2016-01-13T09:23:12Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144792
.
Reference: [1] Azbelev, N. V., Maksimov, V. P., Rakhmatullina, L. F.: Introduction to the Theory of \hbox{Functional}-Differential Equations.Nauka, Moskva Russian. English summary (1991). Zbl 0725.34071
Reference: [2] Berezansky, L., Braverman, E., Domoshnitsky, A.: Stability of the second order delay differential equations with a damping term.Differ. Equ. Dyn. Syst. 16 (2008), 185-205. Zbl 1180.34077, MR 2534439, 10.1007/s12591-008-0012-4
Reference: [3] Burton, T. A.: Stability by Fixed Point Theory for Functional Differential Equations.Dover Publications, Mineola (2006). Zbl 1160.34001, MR 2281958
Reference: [4] Burton, T. A.: Stability and Periodic Solutions of Ordinary and Functional-Differential Equations.Mathematics in Science and Engineering 178 Academic Press, Orlando (1985). Zbl 0635.34001
Reference: [5] Burton, T. A., Furumochi, T.: Asymptotic behavior of solutions of functional differential equations by fixed point theorems.Dyn. Syst. Appl. 11 (2002), 499-519. Zbl 1044.34033, MR 1946140
Reference: [6] Burton, T. A., Hatvani, L.: Asymptotic stability of second order ordinary, functional, and partial differential equations.J. Math. Anal. Appl. 176 (1993), 261-281. Zbl 0779.34042, 10.1006/jmaa.1993.1212
Reference: [7] Cahlon, B., Schmidt, D.: Stability criteria for certain second-order delay differential equations with mixed coefficients.J. Comput. Appl. Math. 170 (2004), 79-102. Zbl 1064.34060, MR 2075825, 10.1016/j.cam.2003.12.043
Reference: [8] Cahlon, B., Schmidt, D.: Stability criteria for certain second order delay differential equations.Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 10 (2003), 593-621. Zbl 1036.34085, MR 1978592
Reference: [9] Domoshnitsky, A.: Nonoscillation, maximum principles, and exponential stability of second order delay differential equations without damping term.J. Inequal. Appl. (2014), 2014:361, 26 pages. MR 3347683
Reference: [10] Domoshnitsky, A.: Unboundedness of solutions and instability of differential equations of the second order with delayed argument.Differ. Integral Equ. 14 (2001), 559-576. Zbl 1023.34061, MR 1824743
Reference: [11] Domoshnitsky, A.: Componentwise applicability of Chaplygin’s theorem to a system of linear differential equations with time-lag.Differ. Equations 26 (1990), 1254-1259; translation from Differ. Uravn. 26 (1990), 1699-1705 Russian. MR 1089738
Reference: [12] Došlá, Z., Kiguradze, I.: On boundedness and stability of solutions of second order linear differential equations with advanced arguments.Adv. Math. Sci. Appl. 9 (1999), 1-24. Zbl 0926.34061
Reference: [13] Erbe, L. H., Kong, Q., Zhang, B. G.: Oscillation Theory for Functional Differential Equations.Pure and Applied Mathematics 190 Marcel Dekker, New York (1995).
Reference: [14] Erneux, T.: Applied Delay Differential Equations.Surveys and Tutorials in the Applied Mathematical Sciences 3 Springer, New York (2009). Zbl 1201.34002, MR 2498700
Reference: [15] Fomin, V. N., Fradkov, A. L., Yakubovich, V. A.: Adaptive Control of Dynamical Objects.Nauka, Moskva Russian (1981). Zbl 0522.93002
Reference: [16] Izyumova, D. V.: On the boundedness and stability of the solutions of nonlinear second order functional-differential equations.Soobshch. Akad. Nauk Gruz. SSR 100 Russian (1980), 285-288. Zbl 0457.34050
Reference: [17] Kolmanovskii, V., Myshkis, A.: Introduction to the Theory and Applications of Functional-Differential Equations.Mathematics and Its Applications 463 Kluwer Academic Publishers, Dordrecht (1999). Zbl 0917.34001, MR 1680144
Reference: [18] Ladde, G. S., Lakshmikantham, V., Zhang, B. G.: Oscillation Theory of Differential Equations with Deviating Arguments.Pure and Applied Mathematics 110 Marcel Dekker, New York (1987). Zbl 0832.34071, MR 1017244
Reference: [19] Minorsky, N.: Nonlinear Oscillations.D. Van Nostrand Company, Princeton (1962). Zbl 0102.30402
Reference: [20] Myshkis, A. D.: Linear Differential Equations with Retarded Argument.Izdat. Nauka, Moskva Russian (1972). Zbl 0261.34040
Reference: [21] Pinto, M.: Asymptotic solutions for second order delay differential equations.Nonlinear Anal., Theory Methods Appl. 28 (1997), 1729-1740. Zbl 0871.34045, MR 1430514, 10.1016/S0362-546X(96)00024-7
Reference: [22] Pontryagin, L. S.: On the zeros of some elementary transcendental functions.Am. Math. Soc., Transl., II. Ser. 1 (1955), 95-110; Izv. Akad. Nauk SSSR, Ser. Mat. 6 Russian (1942), 115-134. Zbl 0068.05803, 10.1090/trans2/001/06
Reference: [23] Zhang, B.: On the retarded Liénard equation.Proc. Am. Math. Soc. 115 (1992), 779-785. Zbl 0756.34075
.

Files

Files Size Format View
CzechMathJ_65-2015-4_15.pdf 307.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo