Previous |  Up |  Next

Article

Title: Zeros of Solutions and Their Derivatives of Higher Order Non-homogeneous Linear Differential Equations (English)
Author: Belaidi, Benharrat
Author: Latreuch, Zinelâabidine
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 23
Issue: 2
Year: 2015
Pages: 143-161
Summary lang: English
.
Category: math
.
Summary: This paper is devoted to studying the growth and oscillation of solutions and their derivatives of higher order non-homogeneous linear differential equations with finite order meromorphic coefficients. Illustrative examples are also treated. (English)
Keyword: Linear differential equations
Keyword: Meromorphic functions
Keyword: Exponent of convergence of the sequence of zeros
MSC: 30D35
MSC: 34M10
idZBL: Zbl 1343.34202
idMR: MR3436682
.
Date available: 2016-01-19T13:51:32Z
Last updated: 2023-07-17
Stable URL: http://hdl.handle.net/10338.dmlcz/144803
.
Reference: [1] Bank, S., Laine, I.: On the oscillation theory of $f''+Af=0$ where $A$ is entire.Trans. Amer. Math. Soc., 273, 1, 1982, 351-363, Zbl 0505.34026, MR 0664047
Reference: [2] Bank, S., Laine, I.: On the zeros of meromorphic solutions of second order linear differential equations.Comment. Math. Helv., 58, 4, 1983, 656-677, Zbl 0532.34008, MR 0728459, 10.1007/BF02564659
Reference: [3] Belaïdi, B.: Growth and oscillation theory of solutions of some linear differential equations.Mat. Vesnik, 60, 4, 2008, 233-246, Zbl 1274.30112, MR 2465805
Reference: [4] Cao, T. B.: Growth of solutions of a class of complex differential equations.Ann. Polon. Math., 95, 2, 2009, 141-152, Zbl 1173.34054, MR 2476609, 10.4064/ap95-2-5
Reference: [5] Chen, Z. X.: Zeros of meromorphic solutions of higher order linear differential equations.Analysis, 14, 4, 1994, 425-438, Zbl 0815.34003, MR 1310623, 10.1524/anly.1994.14.4.425
Reference: [6] Chen, Z. X., Gao, S. A.: The complex oscillation theory of certain nonhomogeneous linear differential equations with transcendental entire coefficients.J. Math. Anal. Appl., 179, 2, 1993, 403-416, MR 1249828, 10.1006/jmaa.1993.1359
Reference: [7] Chen, Z. X., Yang, C. C.: Some further results on the zeros and growths of entire solutions of second order linear differential equations.Kodai Math. J., 22, 2, 1999, 273-285, MR 1700597, 10.2996/kmj/1138044047
Reference: [8] Gundersen, G. G., Steinbart, E. M., Wang, S.: The possible orders of solutions of linear differential equations with polynomial coefficients.Trans. Amer. Math. Soc., 350, 3, 1998, 1225-1247, Zbl 0893.34003, MR 1451603, 10.1090/S0002-9947-98-02080-7
Reference: [9] Hayman, W. K.: Meromorphic functions.1964, Clarendon Press, Oxford, Zbl 0115.06203, MR 0164038
Reference: [10] Hellerstein, S., Miles, J., Rossi, J.: On the growth of solutions of certain linear differential equations.Ann. Acad. Sci. Fenn. Ser. A I Math., 17, 2, 1992, 343-365, Zbl 0759.34005, MR 1190329, 10.5186/aasfm.1992.1723
Reference: [11] Laine, I.: Nevanlinna theory and complex differential equations.1993, de Gruyter Studies in Mathematics, 15. Walter de Gruyter & Co., Berlin-New York, MR 1207139
Reference: [12] Latreuch, Z., Belaïdi, B.: On the zeros of solutions and their derivatives of second order non-homogeneous linear differential equations.Miskolc Math. Notes, 16, 1, 2015, 237-248, Zbl 1340.34344, MR 3384603, 10.18514/MMN.2015.704
Reference: [13] Levin, B. Ya.: Lectures on entire functions.150, 1996, American Mathematical Society, Zbl 0856.30001, MR 1400006
Reference: [14] Rubel, L. A., Yang, C. C.: Values shared by an entire function and its derivative.599, 1977, 101-103, Springer, Berlin, Complex analysis (Proc. Conf., Univ. Kentucky, Lexington, Ky., 1976). Lecture Notes in Math.. Zbl 0362.30026, MR 0460640, 10.1007/BFb0096830
Reference: [15] Tu, J., Xu, H. Y., Zhang, C. Y.: On the zeros of solutions of any order of derivative of second order linear differential equations taking small functions.Electron. J. Qual. Theory Differ. Equ., 23, 2011, 1-17, Zbl 1340.30140, MR 2786477, 10.14232/ejqtde.2011.1.23
Reference: [16] Wang, L., Liu, H.: Growth of meromorphic solutions of higher order linear differential equations.Electron. J. Differential Equations, 125, 2014, 1-11, Zbl 1295.30076, MR 3210540
Reference: [17] Yang, C. C., Yi, H. X.: Uniqueness theory of meromorphic functions.Kluwer Academic Publishers Group, Dordrecht, 557, 2003, Zbl 1070.30011, MR 2105668
Reference: [18] Yang, L. Z.: The growth of linear differential equations and their applications.Israel J.Math., 147, 2005, 359-370, Zbl 1131.34059, MR 2166368, 10.1007/BF02785372
.

Files

Files Size Format View
ActaOstrav_23-2015-2_5.pdf 421.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo