Title:
|
Zeros of Solutions and Their Derivatives of Higher Order Non-homogeneous Linear Differential Equations (English) |
Author:
|
Belaidi, Benharrat |
Author:
|
Latreuch, Zinelâabidine |
Language:
|
English |
Journal:
|
Communications in Mathematics |
ISSN:
|
1804-1388 (print) |
ISSN:
|
2336-1298 (online) |
Volume:
|
23 |
Issue:
|
2 |
Year:
|
2015 |
Pages:
|
143-161 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper is devoted to studying the growth and oscillation of solutions and their derivatives of higher order non-homogeneous linear differential equations with finite order meromorphic coefficients. Illustrative examples are also treated. (English) |
Keyword:
|
Linear differential equations |
Keyword:
|
Meromorphic functions |
Keyword:
|
Exponent of convergence of the sequence of zeros |
MSC:
|
30D35 |
MSC:
|
34M10 |
idZBL:
|
Zbl 1343.34202 |
idMR:
|
MR3436682 |
. |
Date available:
|
2016-01-19T13:51:32Z |
Last updated:
|
2023-07-17 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144803 |
. |
Reference:
|
[1] Bank, S., Laine, I.: On the oscillation theory of $f''+Af=0$ where $A$ is entire.Trans. Amer. Math. Soc., 273, 1, 1982, 351-363, Zbl 0505.34026, MR 0664047 |
Reference:
|
[2] Bank, S., Laine, I.: On the zeros of meromorphic solutions of second order linear differential equations.Comment. Math. Helv., 58, 4, 1983, 656-677, Zbl 0532.34008, MR 0728459, 10.1007/BF02564659 |
Reference:
|
[3] Belaïdi, B.: Growth and oscillation theory of solutions of some linear differential equations.Mat. Vesnik, 60, 4, 2008, 233-246, Zbl 1274.30112, MR 2465805 |
Reference:
|
[4] Cao, T. B.: Growth of solutions of a class of complex differential equations.Ann. Polon. Math., 95, 2, 2009, 141-152, Zbl 1173.34054, MR 2476609, 10.4064/ap95-2-5 |
Reference:
|
[5] Chen, Z. X.: Zeros of meromorphic solutions of higher order linear differential equations.Analysis, 14, 4, 1994, 425-438, Zbl 0815.34003, MR 1310623, 10.1524/anly.1994.14.4.425 |
Reference:
|
[6] Chen, Z. X., Gao, S. A.: The complex oscillation theory of certain nonhomogeneous linear differential equations with transcendental entire coefficients.J. Math. Anal. Appl., 179, 2, 1993, 403-416, MR 1249828, 10.1006/jmaa.1993.1359 |
Reference:
|
[7] Chen, Z. X., Yang, C. C.: Some further results on the zeros and growths of entire solutions of second order linear differential equations.Kodai Math. J., 22, 2, 1999, 273-285, MR 1700597, 10.2996/kmj/1138044047 |
Reference:
|
[8] Gundersen, G. G., Steinbart, E. M., Wang, S.: The possible orders of solutions of linear differential equations with polynomial coefficients.Trans. Amer. Math. Soc., 350, 3, 1998, 1225-1247, Zbl 0893.34003, MR 1451603, 10.1090/S0002-9947-98-02080-7 |
Reference:
|
[9] Hayman, W. K.: Meromorphic functions.1964, Clarendon Press, Oxford, Zbl 0115.06203, MR 0164038 |
Reference:
|
[10] Hellerstein, S., Miles, J., Rossi, J.: On the growth of solutions of certain linear differential equations.Ann. Acad. Sci. Fenn. Ser. A I Math., 17, 2, 1992, 343-365, Zbl 0759.34005, MR 1190329, 10.5186/aasfm.1992.1723 |
Reference:
|
[11] Laine, I.: Nevanlinna theory and complex differential equations.1993, de Gruyter Studies in Mathematics, 15. Walter de Gruyter & Co., Berlin-New York, MR 1207139 |
Reference:
|
[12] Latreuch, Z., Belaïdi, B.: On the zeros of solutions and their derivatives of second order non-homogeneous linear differential equations.Miskolc Math. Notes, 16, 1, 2015, 237-248, Zbl 1340.34344, MR 3384603, 10.18514/MMN.2015.704 |
Reference:
|
[13] Levin, B. Ya.: Lectures on entire functions.150, 1996, American Mathematical Society, Zbl 0856.30001, MR 1400006 |
Reference:
|
[14] Rubel, L. A., Yang, C. C.: Values shared by an entire function and its derivative.599, 1977, 101-103, Springer, Berlin, Complex analysis (Proc. Conf., Univ. Kentucky, Lexington, Ky., 1976). Lecture Notes in Math.. Zbl 0362.30026, MR 0460640, 10.1007/BFb0096830 |
Reference:
|
[15] Tu, J., Xu, H. Y., Zhang, C. Y.: On the zeros of solutions of any order of derivative of second order linear differential equations taking small functions.Electron. J. Qual. Theory Differ. Equ., 23, 2011, 1-17, Zbl 1340.30140, MR 2786477, 10.14232/ejqtde.2011.1.23 |
Reference:
|
[16] Wang, L., Liu, H.: Growth of meromorphic solutions of higher order linear differential equations.Electron. J. Differential Equations, 125, 2014, 1-11, Zbl 1295.30076, MR 3210540 |
Reference:
|
[17] Yang, C. C., Yi, H. X.: Uniqueness theory of meromorphic functions.Kluwer Academic Publishers Group, Dordrecht, 557, 2003, Zbl 1070.30011, MR 2105668 |
Reference:
|
[18] Yang, L. Z.: The growth of linear differential equations and their applications.Israel J.Math., 147, 2005, 359-370, Zbl 1131.34059, MR 2166368, 10.1007/BF02785372 |
. |