Title:
|
Rank tests in regression model based on minimum distance estimates (English) |
Author:
|
Navrátil, Radim |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
51 |
Issue:
|
6 |
Year:
|
2015 |
Pages:
|
909-922 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper a new rank test in a linear regression model is introduced. The test statistic is based on a certain minimum distance estimator, however, unlike classical rank tests in regression it is not a simple linear rank statistic. Its exact distribution under the null hypothesis is derived, and further, the asymptotic distribution both under the null hypothesis and the local alternative is investigated. It is shown that the proposed test is applicable in measurement error models. Finally, a simulation study is conducted to show a good performance of the test. It has, in some situations, a greater power than the widely used Wilcoxon rank test. (English) |
Keyword:
|
measurement errors |
Keyword:
|
minimum distance estimates |
Keyword:
|
rank tests |
MSC:
|
62G10 |
MSC:
|
62J05 |
idZBL:
|
Zbl 06537787 |
idMR:
|
MR3453677 |
DOI:
|
10.14736/kyb-2015-6-0909 |
. |
Date available:
|
2016-01-21T18:12:27Z |
Last updated:
|
2018-01-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144815 |
. |
Reference:
|
[1] Adcock, R. J.: Note on the method of least squares..The Analyst 4 (1877), 183-184. 10.2307/2635777 |
Reference:
|
[2] Anderson, T., Darling, D.: Asymptotic theory of certain goodness of fit criteria based on stochastic processes..Ann. Math. Statist. 23 (1952), 193-212. Zbl 0048.11301, MR 0050238, 10.1214/aoms/1177729437 |
Reference:
|
[3] Buonaccorsi, J. P.: Measurement Error Models, Methods and Applications..Chapman and Hall/CRC, Boca Raton 2010. Zbl 1277.62014, MR 2682774, 10.1201/9781420066586 |
Reference:
|
[4] Carroll, R. J., Ruppert, D., Stefanski, L. A., Crainiceanu, C. M.: Measurement Error in Nonlinear Models: A Modern Perspective..Chapman and Hall/CRC, Boca Raton 2006. Zbl 1119.62063, MR 2243417, 10.1201/9781420010138 |
Reference:
|
[5] Cheng, C. L., Ness, J. W. van: Statistical Regression with Measurement Error.. 10.1002/1097-0258(20000815)19:15<2077::aid-sim500>3.0.co;2-7 |
Reference:
|
[6] Drion, E. F.: Estimation of the parameters of a straight line and of the variances of the variables, if they are both subject to error..Indagationes Math. 13 (1951), 256-260. Zbl 0042.38602, MR 0042665, 10.1016/s1385-7258(51)50036-7 |
Reference:
|
[7] Feng, L., Zou, C., Wang, Z.: Rank-based inference for the single-index model..Statist. Probab. Lett. 82 (2012), 535-541. Zbl 1237.62041, MR 2887469, 10.1016/j.spl.2011.11.025 |
Reference:
|
[8] Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance..J. Amer. Statist. Assoc. 32 (1937), 675-701. 10.1080/01621459.1937.10503522 |
Reference:
|
[9] Fuller, W. A.: Measurement Error Models..John Wiley and Sons, New York 1987. Zbl 1105.62071, MR 0898653, 10.1002/jae.3950030407 |
Reference:
|
[10] Golub, G. H., Loan, C. F. van: An analysis of the total least squares problem..SIAM J. Numer. Anal. 17 (1980), 883-893. MR 0595451, 10.1137/0717073 |
Reference:
|
[11] Hájek, J., Šidák, Z., Sen, P. K.: Theory of Rank Tests. Second Edition..Academic Press, New York 1999. MR 1680991, 10.1016/b978-012642350-1/50020-5 |
Reference:
|
[12] Hotteling, H., Pabst, M. R.: Rank correlation and tests of significance involving no assumptions of normality..Ann. Math. Statist. 7 (1936), 29-43. 10.1214/aoms/1177732543 |
Reference:
|
[13] Jurečková, J., Koul, H. L., Navrátil, R., Picek, J.: Behavior of R-estimators under measurement errors..To apper in Bernoulli. |
Reference:
|
[14] Jurečková, J., Picek, J., Saleh, A. K. Md. E.: Rank tests and regression rank score tests in measurement error models..Comput. Statist. Data Anal. 54 (2010), 3108-3120. Zbl 1284.62420, MR 2727738, 10.1016/j.csda.2009.08.020 |
Reference:
|
[15] Jurečková, J., Sen, P. K., Picek, J.: Metodological Tools in Robust and Nonparametric Statistics..Chapman and Hall/CRC Press, Boca Raton, London 2013. MR 2963549 |
Reference:
|
[16] Koul, H. L.: Weighted Empirical Processes in Dynamic Nonlinear Models..Springer, New York 2002. Zbl 1007.62047, MR 1911855, 10.1007/978-1-4613-0055-7 |
Reference:
|
[17] Lindley, D. V.: Regression lines and the linear functional relationship..Suppl. J. Roy. Statist. Soc. 9 (1947), 218-244. Zbl 0031.17202, MR 0023492, 10.2307/2984115 |
Reference:
|
[18] Navrátil, R., Saleh, A. K. Md. E.: Rank tests of symmetry and R-estimation of location parameter under measurement errors..Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 50 (2011), 95-102. MR 2920711 |
Reference:
|
[19] Pitman, E. J. G.: Lecture Notes on Nonparametric Statistics..Columbia University, New York 1948. |
Reference:
|
[20] Scott, E. L.: Note on consistent estimates of the linear structural relation between two variables..Anal. Math. Stat. 21 (1950), 284-288. Zbl 0038.29703, MR 0035424, 10.2307/2984115 |
Reference:
|
[21] Smirnov, N. V.: Sur la distribution de $\omega^2$ (criterium de m. r. v. mises)..C. R. Akad. Sci. Paris 202 (1936), 449-452. |
Reference:
|
[22] Tolmatz, L.: On the distribution of the square integral of the brownian bridge..The Annals of Probab. 30 (2002), 253-269. Zbl 1018.60039, MR 1894107, 10.1214/aop/1020107767 |
Reference:
|
[23] Tolmatz, L.: Addenda: On the distribution of the square integral of the brownian bridge..The Annals of Probab. 31 (2003), 530-532. MR 1959802 |
Reference:
|
[24] Wilcoxon, F.: Individual comparisons by ranking methods..Biometrics 1 (1945), 80-83. 10.2307/3001968 |
. |