Title:
|
$C^1$ self-maps on closed manifolds with finitely many periodic points all of them hyperbolic (English) |
Author:
|
Llibre, Jaume |
Author:
|
Sirvent, Víctor F. |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
141 |
Issue:
|
1 |
Year:
|
2016 |
Pages:
|
83-90 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $X$ be a connected closed manifold and $f$ a self-map on $X$. We say that $f$ is almost quasi-unipotent if every eigenvalue $\lambda $ of the map $f_{*k}$ (the induced map on the \mbox {$k$-th} homology group of $X$) which is neither a root of unity, nor a zero, satisfies that the sum of the multiplicities of $\lambda $ as eigenvalue of all the maps $f_{*k}$ with $k$ odd is equal to the sum of the multiplicities of $\lambda $ as eigenvalue of all the maps $f_{*k}$ with $k$ even. \endgraf We prove that if $f$ is $C^1$ having finitely many periodic points all of them hyperbolic, then $f$ is almost quasi-unipotent. (English) |
Keyword:
|
hyperbolic periodic point |
Keyword:
|
differentiable map |
Keyword:
|
Lefschetz number |
Keyword:
|
Lefschetz zeta function |
Keyword:
|
quasi-unipotent map |
Keyword:
|
almost quasi-unipotent map |
MSC:
|
37C05 |
MSC:
|
37C25 |
MSC:
|
37C30 |
idZBL:
|
Zbl 06562160 |
idMR:
|
MR3475139 |
DOI:
|
10.21136/MB.2016.6 |
. |
Date available:
|
2016-03-17T19:47:58Z |
Last updated:
|
2020-07-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144853 |
. |
Reference:
|
[1] Alsedà, L., Baldwin, S., Llibre, J., Swanson, R., Szlenk, W.: Minimal sets of periods for torus maps via Nielsen numbers.Pac. J. Math. 169 (1995), 1-32. Zbl 0843.55004, MR 1346243, 10.2140/pjm.1995.169.1 |
Reference:
|
[2] Berrizbeitia, P., Sirvent, V. F.: On the Lefschetz zeta function for quasi-unipotent maps on the $n$-dimensional torus.J. Difference Equ. Appl. 20 (2014), 961-972. Zbl 1305.37021, MR 3210324, 10.1080/10236198.2013.872637 |
Reference:
|
[3] Brown, R. F.: The Lefschetz Fixed Point Theorem.Scott, Foresman London (1971). Zbl 0216.19601, MR 0283793 |
Reference:
|
[4] Santos, N. M. dos, Urzúa-Luz, R.: Minimal homeomorphisms on low-dimensional tori.Ergodic Theory Dyn. Syst. 29 (2009), 1515-1528. MR 2545015 |
Reference:
|
[5] Franks, J. M.: Homology and Dynamical Systems.CBMS Regional Conference Series in Mathematics 49 American Mathematical Society, Providence (1982). Zbl 0497.58018, MR 0669378 |
Reference:
|
[6] Franks, J. M.: Some smooth maps with infinitely many hyperbolic periodic points.Trans. Am. Math. Soc. 226 (1977), 175-179. Zbl 0346.58011, MR 0436221 |
Reference:
|
[7] Guirao, J. L. García, Llibre, J.: Minimal Lefschetz sets of periods for Morse-Smale diffeomorphisms on the $n$-dimensional torus.J. Difference Equ. Appl. 16 (2010), 689-703. MR 2675600, 10.1080/10236190903203887 |
Reference:
|
[8] Llibre, J., Sirvent, V. F.: $C^1$ self-maps on closed manifolds with all their points hyperbolic.Houston J. Math 41 (2015), 1119-1127. MR 3455349 |
Reference:
|
[9] Llibre, J., Sirvent, V. F.: Minimal sets of periods for Morse-Smale diffeomorphisms on non-orientable compact surfaces without boundary.J. Difference Equ. Appl. 19 (2013), 402-417. MR 3037282, 10.1080/10236198.2011.647006 |
Reference:
|
[10] Llibre, J., Sirvent, V. F.: Minimal sets of periods for Morse-Smale diffeomorphisms on orientable compact surfaces.Houston J. Math. 35 (2009), 835-855 erratum ibid. 36 335-336 (2010). Zbl 1214.37027, MR 2534284 |
Reference:
|
[11] Shub, M., Sullivan, D.: Homology theory and dynamical systems.Topology 14 (1975), 109-132. Zbl 0408.58023, MR 0400306, 10.1016/0040-9383(75)90022-1 |
Reference:
|
[12] Smale, S.: Differentiable dynamical systems.With an appendix to the first part of the paper: ``Anosov diffeomorphisms'' by J. Mather Bull. Am. Math. Soc. 73 (1967), 747-817. Zbl 0202.55202, MR 0228014 |
Reference:
|
[13] Vick, J. W.: Homology Theory. An Introduction to Algebraic Topology.Graduate Texts in Mathematics 145 Springer, New York (1994). Zbl 0789.55004, MR 1254439, 10.1007/978-1-4612-0881-5 |
. |