Previous |  Up |  Next

Article

Title: Incomparability with respect to the triangular order (English)
Author: Aşıcı, Emel
Author: Karaçal, Funda
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 52
Issue: 1
Year: 2016
Pages: 15-27
Summary lang: English
.
Category: math
.
Summary: In this paper, we define the set of incomparable elements with respect to the triangular order for any t-norm on a bounded lattice. By means of the triangular order, an equivalence relation on the class of t-norms on a bounded lattice is defined and this equivalence is deeply investigated. Finally, we discuss some properties of this equivalence. (English)
Keyword: triangular norm
Keyword: $T$-partial order
Keyword: bounded lattice
MSC: 03B52
MSC: 03E72
idZBL: Zbl 06562210
idMR: MR3482608
DOI: 10.14736/kyb-2016-1-0015
.
Date available: 2016-03-21T17:47:41Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/144860
.
Reference: [1] Aşıcı, E., Karaçal, F.: On the T-partial order and properties..Inf. Sci. 267 (2014), 323-333. MR 3177320, 10.1016/j.ins.2014.01.032
Reference: [2] Birkhoff, G.: Lattice Theory. Third edition..Providence 1967. MR 0227053
Reference: [3] Baets, B. De, Mesiar, R.: Triangular norms on product lattices..Fuzzy Sets Syst. 104 (1999), 61-75. Zbl 0935.03060, MR 1685810, 10.1016/s0165-0114(98)00259-0
Reference: [4] Baets, B. De, Mesiar, R.: Triangular norms on the real unit square..In: Proc. 1999 EUSFLAT-ESTYLF Joint Conference, Palma de Mallorca 1999, pp. 351-354.
Reference: [5] Casasnovas, J., Mayor, G.: Discrete t-norms and operations on extended multisets..Fuzzy Sets Syst. 159 (2008), 1165-1177. Zbl 1176.03023, MR 2416385, 10.1016/j.fss.2007.12.005
Reference: [6] Gottwald, S.: A Treatise on Many-valued Logic..Studies in Logic and Computation, Research Studies Press, Baldock 2001. MR 1856623
Reference: [7] Karaçal, F., Aşıcı, E.: Some notes on T-partial order..J. Inequal. Appl. 2013 (2013), 219. MR 3065324, 10.1186/1029-242x-2013-219
Reference: [8] Karaçal, F., Kesicioğlu, M. N.: A T-partial order obtained from t-norms..Kybernetika 47 (2011), 300-314. Zbl 1245.03086, MR 2828579
Reference: [9] Karaçal, F., Sağıroğlu, Y.: Infinetely $\bigvee$- distributive t-norm on complete lattices and pseudo-complements..Fuzzy Sets Syst. 160 (2009), 32-43. MR 2469428
Reference: [10] Karaçal, F., Khadjiev, Dj.: $\bigvee$-distributive and infinitely $\bigvee$-distributive t-norms on complete lattice..Fuzzy Sets Syst. 151 (2005), 341-352. MR 2124884, 10.1016/j.fss.2008.03.022
Reference: [11] Karaçal, F.: On the direct decomposability of strong negations and S-implication operators on product lattices..Inf. Sci. 176 (2006), 3011-3025. Zbl 1104.03016, MR 2247614, 10.1016/j.ins.2005.12.010
Reference: [12] Kesicioğlu, M. N., Karaçal, F., Mesiar, R.: Order-equivalent triangular norms..Fuzzy Sets Syst. 268 (2015), 59-71. MR 3320247
Reference: [13] Khadjiev, D., Karaçal, F.: Pairwise comaximal elements and the classification of all $\vee$-distributive triangular norms of length 3..Inf. Sci. 204 (2012), 36-43. Zbl 1270.03139, MR 2925708, 10.1016/j.ins.2012.03.014
Reference: [14] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Kluwer Academic Publishers, Dordrecht 2000. Zbl 1087.20041, MR 1790096, 10.1007/978-94-015-9540-7
Reference: [15] Liang, X., Pedrycz, W.: Logic-based fuzzy networks: A study in system modeling with triangular norms and uninorms..Fuzzy Sets Syst. 160 (2009), 3475-3502. Zbl 1185.68546, MR 2563300, 10.1016/j.fss.2009.04.014
Reference: [16] Maes, K. C., Mesiarova-Zemankova, A.: Cancellativity properties for t-norms and t-subnorms..Inf. Sci. 179 (2009), 135-150. Zbl 1162.03013, MR 2501780, 10.1016/j.ins.2008.11.035
Reference: [17] Martin, J., Mayor, G., Torrens, J.: On locally internal monotonic operations..Fuzzy Sets Syst. 137 (2003), 27-42. Zbl 1022.03038, MR 1992696, 10.1016/s0165-0114(02)00430-x
Reference: [18] Mitsch, H.: A natural partial order for semigroups..Proc. Am. Math. Soc. 97 (1986), 384-388. Zbl 0596.06015, MR 0840614, 10.1090/s0002-9939-1986-0840614-0
Reference: [19] Saminger, S.: On ordinal sums of triangular norms on bounded lattices..Fuzzy Sets Syst. 157 (2006), 1403-1413. Zbl 1099.06004, MR 2226983, 10.1016/j.fss.2005.12.021
Reference: [20] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces..Elsevier, Amsterdam 1983. Zbl 0546.60010, MR 0790314
Reference: [21] Schweizer, B., Sklar, A.: Espaces métriques aléatoires..C. R. Acad. Sci. Paris Sér. A 247 (1958), 2092-2094. Zbl 0085.12503, MR 0099068
Reference: [22] Schweizer, B., Sklar, A.: Statistical metric spaces..Pacific J. Math. 10 (1960), 313-334. Zbl 0136.39301, MR 0115153, 10.2140/pjm.1960.10.313
Reference: [23] Schweizer, B., Sklar, A.: Associative functions and abstract semigroups..Publ. Math. Debrecen 10 (1963), 69-81. MR 0170967
.

Files

Files Size Format View
Kybernetika_52-2016-1_2.pdf 335.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo